Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction

An in situ energy‐dispersive X‐ray diffraction experiment was undertaken on operational titanium electrowinning cells to observe the formation of rutile (TiO2) passivation layers on Magnéli‐phase (TinO2n−1; n = 4–6) anodes and thus determine the relationship between passivation layer formation and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2012-02, Vol.45 (1), p.28-37
Hauptverfasser: Rowles, Matthew R., Styles, Mark J., Madsen, Ian C., Scarlett, Nicola V. Y., McGregor, Katherine, Riley, Daniel P., Snook, Graeme A., Urban, Andrew J., Connolley, Thomas, Reinhard, Christina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 28
container_title Journal of applied crystallography
container_volume 45
creator Rowles, Matthew R.
Styles, Mark J.
Madsen, Ian C.
Scarlett, Nicola V. Y.
McGregor, Katherine
Riley, Daniel P.
Snook, Graeme A.
Urban, Andrew J.
Connolley, Thomas
Reinhard, Christina
description An in situ energy‐dispersive X‐ray diffraction experiment was undertaken on operational titanium electrowinning cells to observe the formation of rutile (TiO2) passivation layers on Magnéli‐phase (TinO2n−1; n = 4–6) anodes and thus determine the relationship between passivation layer formation and electrolysis time. Quantitative phase analysis of the energy‐dispersive data was undertaken using a crystal‐structure‐based Rietveld refinement. Layer formation was successfully observed and it was found that the rate of increase in layer thickness decreased with time, rather than remaining constant as observed in previous studies. The limiting step in rutile formation is thought to be the rate of solid‐state diffusion of oxygen within the anode structure.
doi_str_mv 10.1107/S0021889811044104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671328394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671328394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3924-1e42e38aceb6922ba66193350e883978feedf3915ee5beae968c4031a20011373</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhiNEJT7aH9CbxYlLwB-J7RzRAltWKxB0qx4tr3cMhmy82A409_7wehtUofZQy9Z4pPd5PZ4pis8EnxCCxelXjCmRspE5q6p8dop9wjEua8HF7rv7XnEQ4yPGhAtK94uft73ukrPO6OR8h7xFGx2jexnTVg8Q0H3wr-kBuS5vCAnpzq8gIusDWvs2QYeibhOCFkwK3jzA2sUUBrQctkx0qUeQwfuhXLm4gZDtAa2ctUGb7TMfiw9WtxE-vcXD4tvlxWLypZzfTK8mZ_PSsIZWJYGKApPawJI3lC4156RhrMYgJWuEtAAryxpSA9RL0NBwaSrMiKb5u4QJdlgcj76b4J97iEnlQg20re7A91HlnhBGs1eVpUd_SR99H7pcnWoIr3leNIvIKDLBxxjAqk1wax0GRbDajkX9M5bMyJF5dS0M_wfUbHK3uKnxb7Qc0dxd-PEH1eFJccFErb5fT9UMV7fzO3GuCPsF8Uug0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916566662</pqid></control><display><type>article</type><title>Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Rowles, Matthew R. ; Styles, Mark J. ; Madsen, Ian C. ; Scarlett, Nicola V. Y. ; McGregor, Katherine ; Riley, Daniel P. ; Snook, Graeme A. ; Urban, Andrew J. ; Connolley, Thomas ; Reinhard, Christina</creator><creatorcontrib>Rowles, Matthew R. ; Styles, Mark J. ; Madsen, Ian C. ; Scarlett, Nicola V. Y. ; McGregor, Katherine ; Riley, Daniel P. ; Snook, Graeme A. ; Urban, Andrew J. ; Connolley, Thomas ; Reinhard, Christina</creatorcontrib><description>An in situ energy‐dispersive X‐ray diffraction experiment was undertaken on operational titanium electrowinning cells to observe the formation of rutile (TiO2) passivation layers on Magnéli‐phase (TinO2n−1; n = 4–6) anodes and thus determine the relationship between passivation layer formation and electrolysis time. Quantitative phase analysis of the energy‐dispersive data was undertaken using a crystal‐structure‐based Rietveld refinement. Layer formation was successfully observed and it was found that the rate of increase in layer thickness decreased with time, rather than remaining constant as observed in previous studies. The limiting step in rutile formation is thought to be the rate of solid‐state diffusion of oxygen within the anode structure.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S0021889811044104</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Anodes ; Constraining ; Crystal structure ; Crystallography ; Diffraction ; Diffusion ; electrolysis ; Energy dissipation ; Fused salts ; in situ energy-dispersive diffraction ; Passivation ; Rietveld refinement ; Rutile ; Titanium dioxide ; X-rays</subject><ispartof>Journal of applied crystallography, 2012-02, Vol.45 (1), p.28-37</ispartof><rights>International Union of Crystallography, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3924-1e42e38aceb6922ba66193350e883978feedf3915ee5beae968c4031a20011373</citedby><cites>FETCH-LOGICAL-c3924-1e42e38aceb6922ba66193350e883978feedf3915ee5beae968c4031a20011373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0021889811044104$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0021889811044104$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rowles, Matthew R.</creatorcontrib><creatorcontrib>Styles, Mark J.</creatorcontrib><creatorcontrib>Madsen, Ian C.</creatorcontrib><creatorcontrib>Scarlett, Nicola V. Y.</creatorcontrib><creatorcontrib>McGregor, Katherine</creatorcontrib><creatorcontrib>Riley, Daniel P.</creatorcontrib><creatorcontrib>Snook, Graeme A.</creatorcontrib><creatorcontrib>Urban, Andrew J.</creatorcontrib><creatorcontrib>Connolley, Thomas</creatorcontrib><creatorcontrib>Reinhard, Christina</creatorcontrib><title>Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>An in situ energy‐dispersive X‐ray diffraction experiment was undertaken on operational titanium electrowinning cells to observe the formation of rutile (TiO2) passivation layers on Magnéli‐phase (TinO2n−1; n = 4–6) anodes and thus determine the relationship between passivation layer formation and electrolysis time. Quantitative phase analysis of the energy‐dispersive data was undertaken using a crystal‐structure‐based Rietveld refinement. Layer formation was successfully observed and it was found that the rate of increase in layer thickness decreased with time, rather than remaining constant as observed in previous studies. The limiting step in rutile formation is thought to be the rate of solid‐state diffusion of oxygen within the anode structure.</description><subject>Anodes</subject><subject>Constraining</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>Diffusion</subject><subject>electrolysis</subject><subject>Energy dissipation</subject><subject>Fused salts</subject><subject>in situ energy-dispersive diffraction</subject><subject>Passivation</subject><subject>Rietveld refinement</subject><subject>Rutile</subject><subject>Titanium dioxide</subject><subject>X-rays</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhiNEJT7aH9CbxYlLwB-J7RzRAltWKxB0qx4tr3cMhmy82A409_7wehtUofZQy9Z4pPd5PZ4pis8EnxCCxelXjCmRspE5q6p8dop9wjEua8HF7rv7XnEQ4yPGhAtK94uft73ukrPO6OR8h7xFGx2jexnTVg8Q0H3wr-kBuS5vCAnpzq8gIusDWvs2QYeibhOCFkwK3jzA2sUUBrQctkx0qUeQwfuhXLm4gZDtAa2ctUGb7TMfiw9WtxE-vcXD4tvlxWLypZzfTK8mZ_PSsIZWJYGKApPawJI3lC4156RhrMYgJWuEtAAryxpSA9RL0NBwaSrMiKb5u4QJdlgcj76b4J97iEnlQg20re7A91HlnhBGs1eVpUd_SR99H7pcnWoIr3leNIvIKDLBxxjAqk1wax0GRbDajkX9M5bMyJF5dS0M_wfUbHK3uKnxb7Qc0dxd-PEH1eFJccFErb5fT9UMV7fzO3GuCPsF8Uug0A</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Rowles, Matthew R.</creator><creator>Styles, Mark J.</creator><creator>Madsen, Ian C.</creator><creator>Scarlett, Nicola V. Y.</creator><creator>McGregor, Katherine</creator><creator>Riley, Daniel P.</creator><creator>Snook, Graeme A.</creator><creator>Urban, Andrew J.</creator><creator>Connolley, Thomas</creator><creator>Reinhard, Christina</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction</title><author>Rowles, Matthew R. ; Styles, Mark J. ; Madsen, Ian C. ; Scarlett, Nicola V. Y. ; McGregor, Katherine ; Riley, Daniel P. ; Snook, Graeme A. ; Urban, Andrew J. ; Connolley, Thomas ; Reinhard, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3924-1e42e38aceb6922ba66193350e883978feedf3915ee5beae968c4031a20011373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anodes</topic><topic>Constraining</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>Diffusion</topic><topic>electrolysis</topic><topic>Energy dissipation</topic><topic>Fused salts</topic><topic>in situ energy-dispersive diffraction</topic><topic>Passivation</topic><topic>Rietveld refinement</topic><topic>Rutile</topic><topic>Titanium dioxide</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowles, Matthew R.</creatorcontrib><creatorcontrib>Styles, Mark J.</creatorcontrib><creatorcontrib>Madsen, Ian C.</creatorcontrib><creatorcontrib>Scarlett, Nicola V. Y.</creatorcontrib><creatorcontrib>McGregor, Katherine</creatorcontrib><creatorcontrib>Riley, Daniel P.</creatorcontrib><creatorcontrib>Snook, Graeme A.</creatorcontrib><creatorcontrib>Urban, Andrew J.</creatorcontrib><creatorcontrib>Connolley, Thomas</creatorcontrib><creatorcontrib>Reinhard, Christina</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowles, Matthew R.</au><au>Styles, Mark J.</au><au>Madsen, Ian C.</au><au>Scarlett, Nicola V. Y.</au><au>McGregor, Katherine</au><au>Riley, Daniel P.</au><au>Snook, Graeme A.</au><au>Urban, Andrew J.</au><au>Connolley, Thomas</au><au>Reinhard, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>45</volume><issue>1</issue><spage>28</spage><epage>37</epage><pages>28-37</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>An in situ energy‐dispersive X‐ray diffraction experiment was undertaken on operational titanium electrowinning cells to observe the formation of rutile (TiO2) passivation layers on Magnéli‐phase (TinO2n−1; n = 4–6) anodes and thus determine the relationship between passivation layer formation and electrolysis time. Quantitative phase analysis of the energy‐dispersive data was undertaken using a crystal‐structure‐based Rietveld refinement. Layer formation was successfully observed and it was found that the rate of increase in layer thickness decreased with time, rather than remaining constant as observed in previous studies. The limiting step in rutile formation is thought to be the rate of solid‐state diffusion of oxygen within the anode structure.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S0021889811044104</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2012-02, Vol.45 (1), p.28-37
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_proquest_miscellaneous_1671328394
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Anodes
Constraining
Crystal structure
Crystallography
Diffraction
Diffusion
electrolysis
Energy dissipation
Fused salts
in situ energy-dispersive diffraction
Passivation
Rietveld refinement
Rutile
Titanium dioxide
X-rays
title Quantification of passivation layer growth in inert anodes for molten salt electrochemistry by in situ energy-dispersive diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20passivation%20layer%20growth%20in%20inert%20anodes%20for%20molten%20salt%20electrochemistry%20by%20in%20situ%20energy-dispersive%20diffraction&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Rowles,%20Matthew%20R.&rft.date=2012-02-01&rft.volume=45&rft.issue=1&rft.spage=28&rft.epage=37&rft.pages=28-37&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S0021889811044104&rft_dat=%3Cproquest_cross%3E1671328394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916566662&rft_id=info:pmid/&rfr_iscdi=true