Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation

► First- and second-order pyramidal 〈 c + a〉 slip occurs in Mg. ► The first-order edge dislocation can take place with a long stacking fault (SF). ► The first-order edge dislocation has two phases at high stress. ► The second-order 〈 c + a〉 edge dislocation core with edge type is sessile. ► The seco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011-06, Vol.528 (16), p.5411-5420
Hauptverfasser: Kim, D.-H., Ebrahimi, F., Manuel, M.V., Tulenko, J.S., Phillpot, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5420
container_issue 16
container_start_page 5411
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 528
creator Kim, D.-H.
Ebrahimi, F.
Manuel, M.V.
Tulenko, J.S.
Phillpot, S.R.
description ► First- and second-order pyramidal 〈 c + a〉 slip occurs in Mg. ► The first-order edge dislocation can take place with a long stacking fault (SF). ► The first-order edge dislocation has two phases at high stress. ► The second-order 〈 c + a〉 edge dislocation core with edge type is sessile. ► The second-order 〈 c + a〉 edge dislocation is difficult to have a long SF. The generation and structures of first- and second-order pyramidal 〈 c + a〉 dislocations, 1 / 3 { 1   0   1 ¯   1 }   〈 1 ¯   1 ¯   2   3 〉 and 1 / 3 { 1   1   2 ¯   2 }   〈 1 ¯   1 ¯   2   3 〉 , are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of [ 1   1   2 ¯   0 ] - and [ 1   0   1 ¯   0 ] -textured polycrystalline Mg display pyramidal 〈 c + a〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the [ 1   1   2 ¯   0 ] -textured Mg, the first-order pyramidal 〈 c + a〉 slip occurs with 1 / 6 〈 2 ¯   0   2   3 〉 partials or 1 / 9 [ 0   1 ¯   1   3 ] + 1 / 18 [ 6 ¯   2   4   3 ] + 1 / 6 [ 0   2 ¯   2   3 ] extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the [ 1   0   1 ¯   0 ] -texture . The pyramidal 〈 c + a〉 slip on the { 1   1   2 ¯   2 } plane can extend to the basal plane, on which it is terminated by a screw dislocation on the { 1   0   1 ¯   1 } plane.
doi_str_mv 10.1016/j.msea.2011.02.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671326938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311002577</els_id><sourcerecordid>1671326938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-36fd15ca959d87961c15b1daadae014151887ca5ba2492cee86d480409a25fb43</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-AU-5CF66TaU73Ql4kUVXYcWLnkN1Ui0ZupMx6V6cf78ZZvHoqaB43vp4GHsLogUBw4djuxbCVgqAVshWaPmMHUCPXdObbnjODsJIaJQw3Uv2qpSjEAJ6oQ7M32UMsZnSHj3mM0e3hQfcyPPTOeMaPC7ch7Ikh1tIsfAQecSYmo3-bnuu3PfffDrzNS3k9gUz9-dYc67wEtbauKResxczLoXePNUb9uvL55-3X5v7H3ffbj_dN66XZmu6YfagHBplvB7NAA7UBB7RI9VzQYHWo0M1oeyNdER68L0WvTAo1Tz13Q17f517yunPTmWzayiOlgUjpb1YGEbo5GA6XVF5RV1OpWSa7SmHtRqwIOxFqT3ai1J7UWqFtFVpDb17mo_F4TJnjC6Uf0nZSyG1Giv38cpRffYhULbFBYqOfMjkNutT-N-aRxOVjjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671326938</pqid></control><display><type>article</type><title>Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kim, D.-H. ; Ebrahimi, F. ; Manuel, M.V. ; Tulenko, J.S. ; Phillpot, S.R.</creator><creatorcontrib>Kim, D.-H. ; Ebrahimi, F. ; Manuel, M.V. ; Tulenko, J.S. ; Phillpot, S.R.</creatorcontrib><description>► First- and second-order pyramidal 〈 c + a〉 slip occurs in Mg. ► The first-order edge dislocation can take place with a long stacking fault (SF). ► The first-order edge dislocation has two phases at high stress. ► The second-order 〈 c + a〉 edge dislocation core with edge type is sessile. ► The second-order 〈 c + a〉 edge dislocation is difficult to have a long SF. The generation and structures of first- and second-order pyramidal 〈 c + a〉 dislocations, 1 / 3 { 1   0   1 ¯   1 }   〈 1 ¯   1 ¯   2   3 〉 and 1 / 3 { 1   1   2 ¯   2 }   〈 1 ¯   1 ¯   2   3 〉 , are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of [ 1   1   2 ¯   0 ] - and [ 1   0   1 ¯   0 ] -textured polycrystalline Mg display pyramidal 〈 c + a〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the [ 1   1   2 ¯   0 ] -textured Mg, the first-order pyramidal 〈 c + a〉 slip occurs with 1 / 6 〈 2 ¯   0   2   3 〉 partials or 1 / 9 [ 0   1 ¯   1   3 ] + 1 / 18 [ 6 ¯   2   4   3 ] + 1 / 6 [ 0   2 ¯   2   3 ] extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the [ 1   0   1 ¯   0 ] -texture . The pyramidal 〈 c + a〉 slip on the { 1   1   2 ¯   2 } plane can extend to the basal plane, on which it is terminated by a screw dislocation on the { 1   0   1 ¯   1 } plane.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.02.082</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Defects and impurities in crystals; microstructure ; Dislocation ; Dislocations ; Edge dislocations ; Exact sciences and technology ; Grain boundaries ; Linear defects: dislocations, disclinations ; Magnesium ; Molecular dynamics ; Nanostructure ; Physics ; Pyramidal slip ; Simulation ; Slip ; Structure of solids and liquids; crystallography</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2011-06, Vol.528 (16), p.5411-5420</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-36fd15ca959d87961c15b1daadae014151887ca5ba2492cee86d480409a25fb43</citedby><cites>FETCH-LOGICAL-c429t-36fd15ca959d87961c15b1daadae014151887ca5ba2492cee86d480409a25fb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2011.02.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24202857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, D.-H.</creatorcontrib><creatorcontrib>Ebrahimi, F.</creatorcontrib><creatorcontrib>Manuel, M.V.</creatorcontrib><creatorcontrib>Tulenko, J.S.</creatorcontrib><creatorcontrib>Phillpot, S.R.</creatorcontrib><title>Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>► First- and second-order pyramidal 〈 c + a〉 slip occurs in Mg. ► The first-order edge dislocation can take place with a long stacking fault (SF). ► The first-order edge dislocation has two phases at high stress. ► The second-order 〈 c + a〉 edge dislocation core with edge type is sessile. ► The second-order 〈 c + a〉 edge dislocation is difficult to have a long SF. The generation and structures of first- and second-order pyramidal 〈 c + a〉 dislocations, 1 / 3 { 1   0   1 ¯   1 }   〈 1 ¯   1 ¯   2   3 〉 and 1 / 3 { 1   1   2 ¯   2 }   〈 1 ¯   1 ¯   2   3 〉 , are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of [ 1   1   2 ¯   0 ] - and [ 1   0   1 ¯   0 ] -textured polycrystalline Mg display pyramidal 〈 c + a〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the [ 1   1   2 ¯   0 ] -textured Mg, the first-order pyramidal 〈 c + a〉 slip occurs with 1 / 6 〈 2 ¯   0   2   3 〉 partials or 1 / 9 [ 0   1 ¯   1   3 ] + 1 / 18 [ 6 ¯   2   4   3 ] + 1 / 6 [ 0   2 ¯   2   3 ] extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the [ 1   0   1 ¯   0 ] -texture . The pyramidal 〈 c + a〉 slip on the { 1   1   2 ¯   2 } plane can extend to the basal plane, on which it is terminated by a screw dislocation on the { 1   0   1 ¯   1 } plane.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Edge dislocations</subject><subject>Exact sciences and technology</subject><subject>Grain boundaries</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Magnesium</subject><subject>Molecular dynamics</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Pyramidal slip</subject><subject>Simulation</subject><subject>Slip</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7-AU-5CF66TaU73Ql4kUVXYcWLnkN1Ui0ZupMx6V6cf78ZZvHoqaB43vp4GHsLogUBw4djuxbCVgqAVshWaPmMHUCPXdObbnjODsJIaJQw3Uv2qpSjEAJ6oQ7M32UMsZnSHj3mM0e3hQfcyPPTOeMaPC7ch7Ikh1tIsfAQecSYmo3-bnuu3PfffDrzNS3k9gUz9-dYc67wEtbauKResxczLoXePNUb9uvL55-3X5v7H3ffbj_dN66XZmu6YfagHBplvB7NAA7UBB7RI9VzQYHWo0M1oeyNdER68L0WvTAo1Tz13Q17f517yunPTmWzayiOlgUjpb1YGEbo5GA6XVF5RV1OpWSa7SmHtRqwIOxFqT3ai1J7UWqFtFVpDb17mo_F4TJnjC6Uf0nZSyG1Giv38cpRffYhULbFBYqOfMjkNutT-N-aRxOVjjo</recordid><startdate>20110625</startdate><enddate>20110625</enddate><creator>Kim, D.-H.</creator><creator>Ebrahimi, F.</creator><creator>Manuel, M.V.</creator><creator>Tulenko, J.S.</creator><creator>Phillpot, S.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110625</creationdate><title>Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation</title><author>Kim, D.-H. ; Ebrahimi, F. ; Manuel, M.V. ; Tulenko, J.S. ; Phillpot, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-36fd15ca959d87961c15b1daadae014151887ca5ba2492cee86d480409a25fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Edge dislocations</topic><topic>Exact sciences and technology</topic><topic>Grain boundaries</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Magnesium</topic><topic>Molecular dynamics</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Pyramidal slip</topic><topic>Simulation</topic><topic>Slip</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, D.-H.</creatorcontrib><creatorcontrib>Ebrahimi, F.</creatorcontrib><creatorcontrib>Manuel, M.V.</creatorcontrib><creatorcontrib>Tulenko, J.S.</creatorcontrib><creatorcontrib>Phillpot, S.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, D.-H.</au><au>Ebrahimi, F.</au><au>Manuel, M.V.</au><au>Tulenko, J.S.</au><au>Phillpot, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011-06-25</date><risdate>2011</risdate><volume>528</volume><issue>16</issue><spage>5411</spage><epage>5420</epage><pages>5411-5420</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► First- and second-order pyramidal 〈 c + a〉 slip occurs in Mg. ► The first-order edge dislocation can take place with a long stacking fault (SF). ► The first-order edge dislocation has two phases at high stress. ► The second-order 〈 c + a〉 edge dislocation core with edge type is sessile. ► The second-order 〈 c + a〉 edge dislocation is difficult to have a long SF. The generation and structures of first- and second-order pyramidal 〈 c + a〉 dislocations, 1 / 3 { 1   0   1 ¯   1 }   〈 1 ¯   1 ¯   2   3 〉 and 1 / 3 { 1   1   2 ¯   2 }   〈 1 ¯   1 ¯   2   3 〉 , are determined in pure magnesium using molecular dynamics simulation. In particular, simulations of [ 1   1   2 ¯   0 ] - and [ 1   0   1 ¯   0 ] -textured polycrystalline Mg display pyramidal 〈 c + a〉 slip nucleated at grain boundaries. Both the first- and second-order dislocations appear as a partial or extended edge type. In the [ 1   1   2 ¯   0 ] -textured Mg, the first-order pyramidal 〈 c + a〉 slip occurs with 1 / 6 〈 2 ¯   0   2   3 〉 partials or 1 / 9 [ 0   1 ¯   1   3 ] + 1 / 18 [ 6 ¯   2   4   3 ] + 1 / 6 [ 0   2 ¯   2   3 ] extended dislocations. Secondary pyramidal dislocations are created with edge type from grain boundaries in the [ 1   0   1 ¯   0 ] -texture . The pyramidal 〈 c + a〉 slip on the { 1   1   2 ¯   2 } plane can extend to the basal plane, on which it is terminated by a screw dislocation on the { 1   0   1 ¯   1 } plane.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.02.082</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-06, Vol.528 (16), p.5411-5420
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1671326938
source ScienceDirect Journals (5 years ago - present)
subjects Condensed matter: structure, mechanical and thermal properties
Defects and impurities in crystals
microstructure
Dislocation
Dislocations
Edge dislocations
Exact sciences and technology
Grain boundaries
Linear defects: dislocations, disclinations
Magnesium
Molecular dynamics
Nanostructure
Physics
Pyramidal slip
Simulation
Slip
Structure of solids and liquids
crystallography
title Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain-boundary%20activated%20pyramidal%20dislocations%20in%20nano-textured%20Mg%20by%20molecular%20dynamics%20simulation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Kim,%20D.-H.&rft.date=2011-06-25&rft.volume=528&rft.issue=16&rft.spage=5411&rft.epage=5420&rft.pages=5411-5420&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.02.082&rft_dat=%3Cproquest_cross%3E1671326938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671326938&rft_id=info:pmid/&rft_els_id=S0921509311002577&rfr_iscdi=true