Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting

In the evaluation of supply chain process improvements, the question of how to predict product demand quantity and prepare material flows in order to reduce cycle time has emerged as an important issue, especially in the 3C (computer, communication, and consumer electronic) market. This paper constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production economics 2010-12, Vol.128 (2), p.603-613
Hauptverfasser: Lu, Chi-Jie, Wang, Yen-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 2
container_start_page 603
container_title International journal of production economics
container_volume 128
creator Lu, Chi-Jie
Wang, Yen-Wen
description In the evaluation of supply chain process improvements, the question of how to predict product demand quantity and prepare material flows in order to reduce cycle time has emerged as an important issue, especially in the 3C (computer, communication, and consumer electronic) market. This paper constructs a predicting model to deal with the product demand forecast problem with the aid of a growing hierarchical self-organizing maps and independent component analysis. Independent component analysis method is used to detect and remove the noise of data and further improve the performance of predicting model, then growing hierarchical self-organizing maps is used to classify the data, and after the classification, support vector regression is applied to construct the product demand forecasting model. In the experimental results, the model proposed in this paper can be successfully applied in the forecasting problem.
doi_str_mv 10.1016/j.ijpe.2010.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671326819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092552731000229X</els_id><sourcerecordid>1671326819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e682412871d687e4afc8721e50466602d06586510cd3a1515b1c3af6a3a0d7703</originalsourceid><addsrcrecordid>eNp9UU2v0zAQjBBIlAd_gJPFiUuKPxLblbigigeIJ3GBs-Vnb1pXiR1sp0_lb_CH2VDEgQOHtVf2zOxqpmleMrpllMk3p204zbDlFB-o2lLaPWo2TCvRql7tHjcbuuN923MlnjbPSjlRShXTetP83KfpPsQQDyREDzPgEStxaZpTXDsb7XgpoWDjySGnhxV6DJBtdsfg7EgKjEOb8sHG8GP9nOxcyEOoR1KWeU65kjO4mjLJcMhQSkgRZ5E5J7-4SjxMq_SQMjhbKio8b54Mdizw4s9903y7ff91_7G9-_Lh0_7dXeu6HastSM07xrViXmoFnR2cVpxBTzspJeWeyl7LnlHnhWU96--ZE3aQVljqlaLipnl91cVVvi9QqplCcTCONkJaimFSMcGlZjuEvvoHekpLRmuK0VTJrut4jyB-BbmcSskwmDmHyeaLYdSsMZmTWWMya0yGKoMxIenzlZTRfPeXAQA4ClwyZ4Pbc43nBes3VdiwtlgzlqTCSCbMsU6o9vaqBujbGVMyxQWIDnxAe6vxKfxvmV-3C7es</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807644425</pqid></control><display><type>article</type><title>Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Lu, Chi-Jie ; Wang, Yen-Wen</creator><creatorcontrib>Lu, Chi-Jie ; Wang, Yen-Wen</creatorcontrib><description>In the evaluation of supply chain process improvements, the question of how to predict product demand quantity and prepare material flows in order to reduce cycle time has emerged as an important issue, especially in the 3C (computer, communication, and consumer electronic) market. This paper constructs a predicting model to deal with the product demand forecast problem with the aid of a growing hierarchical self-organizing maps and independent component analysis. Independent component analysis method is used to detect and remove the noise of data and further improve the performance of predicting model, then growing hierarchical self-organizing maps is used to classify the data, and after the classification, support vector regression is applied to construct the product demand forecasting model. In the experimental results, the model proposed in this paper can be successfully applied in the forecasting problem.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2010.07.004</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Demand ; Demand analysis ; Demand forecasting ; Demand forecasting Support vector regression Independent component analysis Growing hierarchical self-organizing maps ; Forecasting ; Forecasting techniques ; Growing hierarchical self-organizing maps ; Independent component analysis ; Marketing ; Mathematical analysis ; Mathematical models ; Operations research ; Principal components analysis ; Regression ; Studies ; Supply chain management ; Support vector regression</subject><ispartof>International journal of production economics, 2010-12, Vol.128 (2), p.603-613</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e682412871d687e4afc8721e50466602d06586510cd3a1515b1c3af6a3a0d7703</citedby><cites>FETCH-LOGICAL-c491t-e682412871d687e4afc8721e50466602d06586510cd3a1515b1c3af6a3a0d7703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092552731000229X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27903,27904,65308</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a128_3ay_3a2010_3ai_3a2_3ap_3a603-613.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Chi-Jie</creatorcontrib><creatorcontrib>Wang, Yen-Wen</creatorcontrib><title>Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting</title><title>International journal of production economics</title><description>In the evaluation of supply chain process improvements, the question of how to predict product demand quantity and prepare material flows in order to reduce cycle time has emerged as an important issue, especially in the 3C (computer, communication, and consumer electronic) market. This paper constructs a predicting model to deal with the product demand forecast problem with the aid of a growing hierarchical self-organizing maps and independent component analysis. Independent component analysis method is used to detect and remove the noise of data and further improve the performance of predicting model, then growing hierarchical self-organizing maps is used to classify the data, and after the classification, support vector regression is applied to construct the product demand forecasting model. In the experimental results, the model proposed in this paper can be successfully applied in the forecasting problem.</description><subject>Demand</subject><subject>Demand analysis</subject><subject>Demand forecasting</subject><subject>Demand forecasting Support vector regression Independent component analysis Growing hierarchical self-organizing maps</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Growing hierarchical self-organizing maps</subject><subject>Independent component analysis</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Principal components analysis</subject><subject>Regression</subject><subject>Studies</subject><subject>Supply chain management</subject><subject>Support vector regression</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UU2v0zAQjBBIlAd_gJPFiUuKPxLblbigigeIJ3GBs-Vnb1pXiR1sp0_lb_CH2VDEgQOHtVf2zOxqpmleMrpllMk3p204zbDlFB-o2lLaPWo2TCvRql7tHjcbuuN923MlnjbPSjlRShXTetP83KfpPsQQDyREDzPgEStxaZpTXDsb7XgpoWDjySGnhxV6DJBtdsfg7EgKjEOb8sHG8GP9nOxcyEOoR1KWeU65kjO4mjLJcMhQSkgRZ5E5J7-4SjxMq_SQMjhbKio8b54Mdizw4s9903y7ff91_7G9-_Lh0_7dXeu6HastSM07xrViXmoFnR2cVpxBTzspJeWeyl7LnlHnhWU96--ZE3aQVljqlaLipnl91cVVvi9QqplCcTCONkJaimFSMcGlZjuEvvoHekpLRmuK0VTJrut4jyB-BbmcSskwmDmHyeaLYdSsMZmTWWMya0yGKoMxIenzlZTRfPeXAQA4ClwyZ4Pbc43nBes3VdiwtlgzlqTCSCbMsU6o9vaqBujbGVMyxQWIDnxAe6vxKfxvmV-3C7es</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Lu, Chi-Jie</creator><creator>Wang, Yen-Wen</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20101201</creationdate><title>Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting</title><author>Lu, Chi-Jie ; Wang, Yen-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e682412871d687e4afc8721e50466602d06586510cd3a1515b1c3af6a3a0d7703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Demand</topic><topic>Demand analysis</topic><topic>Demand forecasting</topic><topic>Demand forecasting Support vector regression Independent component analysis Growing hierarchical self-organizing maps</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Growing hierarchical self-organizing maps</topic><topic>Independent component analysis</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Principal components analysis</topic><topic>Regression</topic><topic>Studies</topic><topic>Supply chain management</topic><topic>Support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chi-Jie</creatorcontrib><creatorcontrib>Wang, Yen-Wen</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chi-Jie</au><au>Wang, Yen-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting</atitle><jtitle>International journal of production economics</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>128</volume><issue>2</issue><spage>603</spage><epage>613</epage><pages>603-613</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>In the evaluation of supply chain process improvements, the question of how to predict product demand quantity and prepare material flows in order to reduce cycle time has emerged as an important issue, especially in the 3C (computer, communication, and consumer electronic) market. This paper constructs a predicting model to deal with the product demand forecast problem with the aid of a growing hierarchical self-organizing maps and independent component analysis. Independent component analysis method is used to detect and remove the noise of data and further improve the performance of predicting model, then growing hierarchical self-organizing maps is used to classify the data, and after the classification, support vector regression is applied to construct the product demand forecasting model. In the experimental results, the model proposed in this paper can be successfully applied in the forecasting problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2010.07.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5273
ispartof International journal of production economics, 2010-12, Vol.128 (2), p.603-613
issn 0925-5273
1873-7579
language eng
recordid cdi_proquest_miscellaneous_1671326819
source RePEc; Elsevier ScienceDirect Journals
subjects Demand
Demand analysis
Demand forecasting
Demand forecasting Support vector regression Independent component analysis Growing hierarchical self-organizing maps
Forecasting
Forecasting techniques
Growing hierarchical self-organizing maps
Independent component analysis
Marketing
Mathematical analysis
Mathematical models
Operations research
Principal components analysis
Regression
Studies
Supply chain management
Support vector regression
title Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20independent%20component%20analysis%20and%20growing%20hierarchical%20self-organizing%20maps%20with%20support%20vector%20regression%20in%20product%20demand%20forecasting&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Lu,%20Chi-Jie&rft.date=2010-12-01&rft.volume=128&rft.issue=2&rft.spage=603&rft.epage=613&rft.pages=603-613&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/j.ijpe.2010.07.004&rft_dat=%3Cproquest_cross%3E1671326819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807644425&rft_id=info:pmid/&rft_els_id=S092552731000229X&rfr_iscdi=true