Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors

In this paper, high-luminance yellow-emitting Y 3Al 5O 12:Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2O 3+2.5Al 2O 3+0.15CeO 2+ k(KClO 3+urea)+ mNH 4F precursor mixture (here k is the number of moles of the KClO 3+urea red-ox mixture, and m is the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of luminescence 2011-10, Vol.131 (10), p.2174-2180
Hauptverfasser: Won, C.W., Nersisyan, H.H., Won, H.I., Youn, J.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2180
container_issue 10
container_start_page 2174
container_title Journal of luminescence
container_volume 131
creator Won, C.W.
Nersisyan, H.H.
Won, H.I.
Youn, J.W.
description In this paper, high-luminance yellow-emitting Y 3Al 5O 12:Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2O 3+2.5Al 2O 3+0.15CeO 2+ k(KClO 3+urea)+ mNH 4F precursor mixture (here k is the number of moles of the KClO 3+urea red-ox mixture, and m is the number of moles of NH 4F). The self-sustaining combustion process for the entire reaction sample was provided by the heat generated from the KClO 3+urea mixture. Parametric studies demonstrated that the maximum temperature in the combustion wave varied from 885 to 1200 °C for k=2.0–3.0 mole and m=0–1.5 mole. X-ray analysis results showed that the product obtained in the solid flame consisted of Y 3Al 5O 12:Ce 3+ and KCl phases. Therefore, after dissolving potassium chloride in distillated water, pure-phase YAG:Ce phosphor powder was obtained. The as-prepared YAG:Ce phosphor particles had diameters of 10–25 μm and good dispersity and exhibited luminescence properties comparable to those of YAG:Ce phosphor powders prepared by conventional high-temperature processing. ► A new solid-flame strategy was developed for synthesizing high-luminance YAG:Ce phosphor. ► Adding KClO 3+CO(NH 2) 2+NH 4F mixture to oxide powders provides a low-temperature combustion process. ► YAG:Ce phosphor particles 10–25 μm in diameter were obtained at 1000–1100 °C within tens of seconds. ► As-prepared YAG:Ce emission intensity was 90.1–103.2% compared to that of the reference sample.
doi_str_mv 10.1016/j.jlumin.2011.05.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671326453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022231311002912</els_id><sourcerecordid>1671326453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-84906ad870c897ef91b687f0c9aa3dd5d4ced8424878f661e360add80eb022d93</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpINuk_yAHXQq52B1Jtiz3EAhLsg0EemkOgYJQpHGsxWtvNd40---j7YYeexiGQW_m6X2MXQgoBQj9dV2uh90mjqUEIUqoS5DtB7YQppFFY4z6yBYAUhZSCXXKPhGtAUC1pl2wX3fjjM_JzRi473ETvRv4Nk0eiXg3JY6v09xjyg_8j3tBTvsxzxSJTx3v43PP_1q70SN_vF59WyLf9hPlSnTOTjo3EH5-72fs4fbm5_J7cf9jdbe8vi98peq5MFUL2gXTgDdtg10rnrRpOvCtcyqEOlQeg6lkZRrTaS1QaXAhGMCnnCq06oxdHu_mj__eIc12E8njMLgRpx1ZoRuhpK5qlaXVUerTRJSws9sUNy7trQB7gGnX9gjTHmBaqG2Gmde-vDs4yoS6lPNG-rcrKyVAm4Pu6qjDHPclYrLkI2Y2ISb0sw1T_L_RGxGYjVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671326453</pqid></control><display><type>article</type><title>Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors</title><source>Elsevier ScienceDirect Journals</source><creator>Won, C.W. ; Nersisyan, H.H. ; Won, H.I. ; Youn, J.W.</creator><creatorcontrib>Won, C.W. ; Nersisyan, H.H. ; Won, H.I. ; Youn, J.W.</creatorcontrib><description>In this paper, high-luminance yellow-emitting Y 3Al 5O 12:Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2O 3+2.5Al 2O 3+0.15CeO 2+ k(KClO 3+urea)+ mNH 4F precursor mixture (here k is the number of moles of the KClO 3+urea red-ox mixture, and m is the number of moles of NH 4F). The self-sustaining combustion process for the entire reaction sample was provided by the heat generated from the KClO 3+urea mixture. Parametric studies demonstrated that the maximum temperature in the combustion wave varied from 885 to 1200 °C for k=2.0–3.0 mole and m=0–1.5 mole. X-ray analysis results showed that the product obtained in the solid flame consisted of Y 3Al 5O 12:Ce 3+ and KCl phases. Therefore, after dissolving potassium chloride in distillated water, pure-phase YAG:Ce phosphor powder was obtained. The as-prepared YAG:Ce phosphor particles had diameters of 10–25 μm and good dispersity and exhibited luminescence properties comparable to those of YAG:Ce phosphor powders prepared by conventional high-temperature processing. ► A new solid-flame strategy was developed for synthesizing high-luminance YAG:Ce phosphor. ► Adding KClO 3+CO(NH 2) 2+NH 4F mixture to oxide powders provides a low-temperature combustion process. ► YAG:Ce phosphor particles 10–25 μm in diameter were obtained at 1000–1100 °C within tens of seconds. ► As-prepared YAG:Ce emission intensity was 90.1–103.2% compared to that of the reference sample.</description><identifier>ISSN: 0022-2313</identifier><identifier>EISSN: 1872-7883</identifier><identifier>DOI: 10.1016/j.jlumin.2011.05.029</identifier><identifier>CODEN: JLUMA8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Combustion ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Emission intensity ; Exact sciences and technology ; Luminescence ; Materials science ; Materials synthesis; materials processing ; Microparticles ; Moles ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Phases ; Phosphors ; Photoluminescence ; Physics ; Precursors ; Solid flame ; Urea ; X-rays ; YAG:Ce ; Yellow emission</subject><ispartof>Journal of luminescence, 2011-10, Vol.131 (10), p.2174-2180</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-84906ad870c897ef91b687f0c9aa3dd5d4ced8424878f661e360add80eb022d93</citedby><cites>FETCH-LOGICAL-c435t-84906ad870c897ef91b687f0c9aa3dd5d4ced8424878f661e360add80eb022d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022231311002912$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24310689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Won, C.W.</creatorcontrib><creatorcontrib>Nersisyan, H.H.</creatorcontrib><creatorcontrib>Won, H.I.</creatorcontrib><creatorcontrib>Youn, J.W.</creatorcontrib><title>Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors</title><title>Journal of luminescence</title><description>In this paper, high-luminance yellow-emitting Y 3Al 5O 12:Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2O 3+2.5Al 2O 3+0.15CeO 2+ k(KClO 3+urea)+ mNH 4F precursor mixture (here k is the number of moles of the KClO 3+urea red-ox mixture, and m is the number of moles of NH 4F). The self-sustaining combustion process for the entire reaction sample was provided by the heat generated from the KClO 3+urea mixture. Parametric studies demonstrated that the maximum temperature in the combustion wave varied from 885 to 1200 °C for k=2.0–3.0 mole and m=0–1.5 mole. X-ray analysis results showed that the product obtained in the solid flame consisted of Y 3Al 5O 12:Ce 3+ and KCl phases. Therefore, after dissolving potassium chloride in distillated water, pure-phase YAG:Ce phosphor powder was obtained. The as-prepared YAG:Ce phosphor particles had diameters of 10–25 μm and good dispersity and exhibited luminescence properties comparable to those of YAG:Ce phosphor powders prepared by conventional high-temperature processing. ► A new solid-flame strategy was developed for synthesizing high-luminance YAG:Ce phosphor. ► Adding KClO 3+CO(NH 2) 2+NH 4F mixture to oxide powders provides a low-temperature combustion process. ► YAG:Ce phosphor particles 10–25 μm in diameter were obtained at 1000–1100 °C within tens of seconds. ► As-prepared YAG:Ce emission intensity was 90.1–103.2% compared to that of the reference sample.</description><subject>Combustion</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Emission intensity</subject><subject>Exact sciences and technology</subject><subject>Luminescence</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Microparticles</subject><subject>Moles</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Phases</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Precursors</subject><subject>Solid flame</subject><subject>Urea</subject><subject>X-rays</subject><subject>YAG:Ce</subject><subject>Yellow emission</subject><issn>0022-2313</issn><issn>1872-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpINuk_yAHXQq52B1Jtiz3EAhLsg0EemkOgYJQpHGsxWtvNd40---j7YYeexiGQW_m6X2MXQgoBQj9dV2uh90mjqUEIUqoS5DtB7YQppFFY4z6yBYAUhZSCXXKPhGtAUC1pl2wX3fjjM_JzRi473ETvRv4Nk0eiXg3JY6v09xjyg_8j3tBTvsxzxSJTx3v43PP_1q70SN_vF59WyLf9hPlSnTOTjo3EH5-72fs4fbm5_J7cf9jdbe8vi98peq5MFUL2gXTgDdtg10rnrRpOvCtcyqEOlQeg6lkZRrTaS1QaXAhGMCnnCq06oxdHu_mj__eIc12E8njMLgRpx1ZoRuhpK5qlaXVUerTRJSws9sUNy7trQB7gGnX9gjTHmBaqG2Gmde-vDs4yoS6lPNG-rcrKyVAm4Pu6qjDHPclYrLkI2Y2ISb0sw1T_L_RGxGYjVY</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Won, C.W.</creator><creator>Nersisyan, H.H.</creator><creator>Won, H.I.</creator><creator>Youn, J.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors</title><author>Won, C.W. ; Nersisyan, H.H. ; Won, H.I. ; Youn, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-84906ad870c897ef91b687f0c9aa3dd5d4ced8424878f661e360add80eb022d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combustion</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Emission intensity</topic><topic>Exact sciences and technology</topic><topic>Luminescence</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Microparticles</topic><topic>Moles</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Phases</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Precursors</topic><topic>Solid flame</topic><topic>Urea</topic><topic>X-rays</topic><topic>YAG:Ce</topic><topic>Yellow emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Won, C.W.</creatorcontrib><creatorcontrib>Nersisyan, H.H.</creatorcontrib><creatorcontrib>Won, H.I.</creatorcontrib><creatorcontrib>Youn, J.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of luminescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Won, C.W.</au><au>Nersisyan, H.H.</au><au>Won, H.I.</au><au>Youn, J.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors</atitle><jtitle>Journal of luminescence</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>131</volume><issue>10</issue><spage>2174</spage><epage>2180</epage><pages>2174-2180</pages><issn>0022-2313</issn><eissn>1872-7883</eissn><coden>JLUMA8</coden><abstract>In this paper, high-luminance yellow-emitting Y 3Al 5O 12:Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2O 3+2.5Al 2O 3+0.15CeO 2+ k(KClO 3+urea)+ mNH 4F precursor mixture (here k is the number of moles of the KClO 3+urea red-ox mixture, and m is the number of moles of NH 4F). The self-sustaining combustion process for the entire reaction sample was provided by the heat generated from the KClO 3+urea mixture. Parametric studies demonstrated that the maximum temperature in the combustion wave varied from 885 to 1200 °C for k=2.0–3.0 mole and m=0–1.5 mole. X-ray analysis results showed that the product obtained in the solid flame consisted of Y 3Al 5O 12:Ce 3+ and KCl phases. Therefore, after dissolving potassium chloride in distillated water, pure-phase YAG:Ce phosphor powder was obtained. The as-prepared YAG:Ce phosphor particles had diameters of 10–25 μm and good dispersity and exhibited luminescence properties comparable to those of YAG:Ce phosphor powders prepared by conventional high-temperature processing. ► A new solid-flame strategy was developed for synthesizing high-luminance YAG:Ce phosphor. ► Adding KClO 3+CO(NH 2) 2+NH 4F mixture to oxide powders provides a low-temperature combustion process. ► YAG:Ce phosphor particles 10–25 μm in diameter were obtained at 1000–1100 °C within tens of seconds. ► As-prepared YAG:Ce emission intensity was 90.1–103.2% compared to that of the reference sample.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jlumin.2011.05.029</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2313
ispartof Journal of luminescence, 2011-10, Vol.131 (10), p.2174-2180
issn 0022-2313
1872-7883
language eng
recordid cdi_proquest_miscellaneous_1671326453
source Elsevier ScienceDirect Journals
subjects Combustion
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Emission intensity
Exact sciences and technology
Luminescence
Materials science
Materials synthesis
materials processing
Microparticles
Moles
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Phases
Phosphors
Photoluminescence
Physics
Precursors
Solid flame
Urea
X-rays
YAG:Ce
Yellow emission
title Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20chemical%20process%20for%20exothermic%20wave%20synthesis%20of%20high%20luminance%20YAG:Ce%20phosphors&rft.jtitle=Journal%20of%20luminescence&rft.au=Won,%20C.W.&rft.date=2011-10-01&rft.volume=131&rft.issue=10&rft.spage=2174&rft.epage=2180&rft.pages=2174-2180&rft.issn=0022-2313&rft.eissn=1872-7883&rft.coden=JLUMA8&rft_id=info:doi/10.1016/j.jlumin.2011.05.029&rft_dat=%3Cproquest_cross%3E1671326453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671326453&rft_id=info:pmid/&rft_els_id=S0022231311002912&rfr_iscdi=true