Polyvalent choline phosphate as a universal biomembrane adhesive

Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the ’PC-inverse’ choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membrane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2012-03, Vol.11 (5), p.468-476
Hauptverfasser: Yu, Xifei, Liu, Zonghua, Janzen, Johan, Chafeeva, Irina, Horte, Sonja, Chen, Wei, Kainthan, Rajesh K., Kizhakkedathu, Jayachandran N., Brooks, Donald E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 5
container_start_page 468
container_title Nature materials
container_volume 11
creator Yu, Xifei
Liu, Zonghua
Janzen, Johan
Chafeeva, Irina
Horte, Sonja
Chen, Wei
Kainthan, Rajesh K.
Kizhakkedathu, Jayachandran N.
Brooks, Donald E.
description Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the ’PC-inverse’ choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG–CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs. Moreover, PC-rich membranes adsorb and rapidly internalize fluorescent HPG–CP but not HPG–PC molecules, which suggests that HPG–CPs could be used as drug-delivery agents. CP-decorated polymers should find broad use, for instance as tissue sealants and in the self-assembly of lipid nanostructures. The headgroup of phospholipids in eukaryotic cell membranes contains phosphatidyl choline (PC). Now, branched polyglycerols decorated with the 'PC-inverse' choline phosphate (CP) are shown to behave as 'universal' biomembrane adhesives, binding electrostatically to cell membranes and to PC-containing liposomes. Binding can be reversed by exposure to PC-containing polymers. These adhesives may find use as tissue sealants and as drug-delivery vehicles.
doi_str_mv 10.1038/nmat3272
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671325426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671325426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-71582b530d7d7a32e2e954ced65ad3cee2ca834be8ec54f038c57dee10bbcaf13</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK2Cv0ACbnQRnfekO6X4goIudB0mkxuTkmTiTFLov3ekqUpX98L5OPeeg9A5wTcEs-S2bXTPqKIHaEq4kjGXEh-OOyGUTtCJ9yuMKRFCHqMJpZxKLvEU3b3ZerPWNbR9ZEpbVy1EXWl9V-oeIu0jHQ1ttQbndR1llW2gyZwOkM5L8EE4RUeFrj2cjXOGPh4f3hfP8fL16WVxv4wNU0kfKyISmgmGc5UrzShQmAtuIJdC58wAUKMTxjNIwAhehFBGqByA4CwzuiBshq62vp2zXwP4Pm0qb6CuwzN28CmRijAqQq6AXu6hKzu4NnyXEkzmJOFCJX-GxlnvHRRp56pGu02A0p9W012rAb0YDYesgfwX3NUYgOst4IPUfoL7f3HP7BtAvICd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019184578</pqid></control><display><type>article</type><title>Polyvalent choline phosphate as a universal biomembrane adhesive</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Yu, Xifei ; Liu, Zonghua ; Janzen, Johan ; Chafeeva, Irina ; Horte, Sonja ; Chen, Wei ; Kainthan, Rajesh K. ; Kizhakkedathu, Jayachandran N. ; Brooks, Donald E.</creator><creatorcontrib>Yu, Xifei ; Liu, Zonghua ; Janzen, Johan ; Chafeeva, Irina ; Horte, Sonja ; Chen, Wei ; Kainthan, Rajesh K. ; Kizhakkedathu, Jayachandran N. ; Brooks, Donald E.</creatorcontrib><description>Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the ’PC-inverse’ choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG–CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs. Moreover, PC-rich membranes adsorb and rapidly internalize fluorescent HPG–CP but not HPG–PC molecules, which suggests that HPG–CPs could be used as drug-delivery agents. CP-decorated polymers should find broad use, for instance as tissue sealants and in the self-assembly of lipid nanostructures. The headgroup of phospholipids in eukaryotic cell membranes contains phosphatidyl choline (PC). Now, branched polyglycerols decorated with the 'PC-inverse' choline phosphate (CP) are shown to behave as 'universal' biomembrane adhesives, binding electrostatically to cell membranes and to PC-containing liposomes. Binding can be reversed by exposure to PC-containing polymers. These adhesives may find use as tissue sealants and as drug-delivery vehicles.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3272</identifier><identifier>PMID: 22426460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/54 ; 639/301/923/1028 ; Adhesives ; Adhesives - chemistry ; Adsorption ; Animals ; Binding ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Chemistry and Materials Science ; CHO Cells ; Choline ; Condensed Matter Physics ; Cricetinae ; Cricetulus ; Density ; Erythrocyte Aggregation ; Erythrocytes - chemistry ; Erythrocytes - ultrastructure ; Glycerol - chemistry ; Humans ; In Vitro Techniques ; Lipid Bilayers - chemistry ; Lipids ; Macromolecules ; Materials Science ; Materials Testing ; Membrane Lipids - chemistry ; Membranes ; Microscopy, Electron, Scanning ; Models, Anatomic ; Nanostructure ; Nanostructured materials ; Nanotechnology ; Optical and Electronic Materials ; Phosphates ; Phosphorylcholine - chemistry ; Plasma - chemistry ; Polymers ; Polymers - chemistry ; Sealants ; Self assembly ; Static Electricity</subject><ispartof>Nature materials, 2012-03, Vol.11 (5), p.468-476</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-71582b530d7d7a32e2e954ced65ad3cee2ca834be8ec54f038c57dee10bbcaf13</citedby><cites>FETCH-LOGICAL-c378t-71582b530d7d7a32e2e954ced65ad3cee2ca834be8ec54f038c57dee10bbcaf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22426460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Xifei</creatorcontrib><creatorcontrib>Liu, Zonghua</creatorcontrib><creatorcontrib>Janzen, Johan</creatorcontrib><creatorcontrib>Chafeeva, Irina</creatorcontrib><creatorcontrib>Horte, Sonja</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Kainthan, Rajesh K.</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><creatorcontrib>Brooks, Donald E.</creatorcontrib><title>Polyvalent choline phosphate as a universal biomembrane adhesive</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the ’PC-inverse’ choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG–CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs. Moreover, PC-rich membranes adsorb and rapidly internalize fluorescent HPG–CP but not HPG–PC molecules, which suggests that HPG–CPs could be used as drug-delivery agents. CP-decorated polymers should find broad use, for instance as tissue sealants and in the self-assembly of lipid nanostructures. The headgroup of phospholipids in eukaryotic cell membranes contains phosphatidyl choline (PC). Now, branched polyglycerols decorated with the 'PC-inverse' choline phosphate (CP) are shown to behave as 'universal' biomembrane adhesives, binding electrostatically to cell membranes and to PC-containing liposomes. Binding can be reversed by exposure to PC-containing polymers. These adhesives may find use as tissue sealants and as drug-delivery vehicles.</description><subject>639/301/54</subject><subject>639/301/923/1028</subject><subject>Adhesives</subject><subject>Adhesives - chemistry</subject><subject>Adsorption</subject><subject>Animals</subject><subject>Binding</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>CHO Cells</subject><subject>Choline</subject><subject>Condensed Matter Physics</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Density</subject><subject>Erythrocyte Aggregation</subject><subject>Erythrocytes - chemistry</subject><subject>Erythrocytes - ultrastructure</subject><subject>Glycerol - chemistry</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Macromolecules</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Membrane Lipids - chemistry</subject><subject>Membranes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Anatomic</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phosphates</subject><subject>Phosphorylcholine - chemistry</subject><subject>Plasma - chemistry</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Sealants</subject><subject>Self assembly</subject><subject>Static Electricity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkEtLw0AUhQdRbK2Cv0ACbnQRnfekO6X4goIudB0mkxuTkmTiTFLov3ekqUpX98L5OPeeg9A5wTcEs-S2bXTPqKIHaEq4kjGXEh-OOyGUTtCJ9yuMKRFCHqMJpZxKLvEU3b3ZerPWNbR9ZEpbVy1EXWl9V-oeIu0jHQ1ttQbndR1llW2gyZwOkM5L8EE4RUeFrj2cjXOGPh4f3hfP8fL16WVxv4wNU0kfKyISmgmGc5UrzShQmAtuIJdC58wAUKMTxjNIwAhehFBGqByA4CwzuiBshq62vp2zXwP4Pm0qb6CuwzN28CmRijAqQq6AXu6hKzu4NnyXEkzmJOFCJX-GxlnvHRRp56pGu02A0p9W012rAb0YDYesgfwX3NUYgOst4IPUfoL7f3HP7BtAvICd</recordid><startdate>20120318</startdate><enddate>20120318</enddate><creator>Yu, Xifei</creator><creator>Liu, Zonghua</creator><creator>Janzen, Johan</creator><creator>Chafeeva, Irina</creator><creator>Horte, Sonja</creator><creator>Chen, Wei</creator><creator>Kainthan, Rajesh K.</creator><creator>Kizhakkedathu, Jayachandran N.</creator><creator>Brooks, Donald E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20120318</creationdate><title>Polyvalent choline phosphate as a universal biomembrane adhesive</title><author>Yu, Xifei ; Liu, Zonghua ; Janzen, Johan ; Chafeeva, Irina ; Horte, Sonja ; Chen, Wei ; Kainthan, Rajesh K. ; Kizhakkedathu, Jayachandran N. ; Brooks, Donald E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-71582b530d7d7a32e2e954ced65ad3cee2ca834be8ec54f038c57dee10bbcaf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/54</topic><topic>639/301/923/1028</topic><topic>Adhesives</topic><topic>Adhesives - chemistry</topic><topic>Adsorption</topic><topic>Animals</topic><topic>Binding</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>CHO Cells</topic><topic>Choline</topic><topic>Condensed Matter Physics</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Density</topic><topic>Erythrocyte Aggregation</topic><topic>Erythrocytes - chemistry</topic><topic>Erythrocytes - ultrastructure</topic><topic>Glycerol - chemistry</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Macromolecules</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Membrane Lipids - chemistry</topic><topic>Membranes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Anatomic</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phosphates</topic><topic>Phosphorylcholine - chemistry</topic><topic>Plasma - chemistry</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Sealants</topic><topic>Self assembly</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xifei</creatorcontrib><creatorcontrib>Liu, Zonghua</creatorcontrib><creatorcontrib>Janzen, Johan</creatorcontrib><creatorcontrib>Chafeeva, Irina</creatorcontrib><creatorcontrib>Horte, Sonja</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Kainthan, Rajesh K.</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><creatorcontrib>Brooks, Donald E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xifei</au><au>Liu, Zonghua</au><au>Janzen, Johan</au><au>Chafeeva, Irina</au><au>Horte, Sonja</au><au>Chen, Wei</au><au>Kainthan, Rajesh K.</au><au>Kizhakkedathu, Jayachandran N.</au><au>Brooks, Donald E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyvalent choline phosphate as a universal biomembrane adhesive</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-03-18</date><risdate>2012</risdate><volume>11</volume><issue>5</issue><spage>468</spage><epage>476</epage><pages>468-476</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the ’PC-inverse’ choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG–CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs. Moreover, PC-rich membranes adsorb and rapidly internalize fluorescent HPG–CP but not HPG–PC molecules, which suggests that HPG–CPs could be used as drug-delivery agents. CP-decorated polymers should find broad use, for instance as tissue sealants and in the self-assembly of lipid nanostructures. The headgroup of phospholipids in eukaryotic cell membranes contains phosphatidyl choline (PC). Now, branched polyglycerols decorated with the 'PC-inverse' choline phosphate (CP) are shown to behave as 'universal' biomembrane adhesives, binding electrostatically to cell membranes and to PC-containing liposomes. Binding can be reversed by exposure to PC-containing polymers. These adhesives may find use as tissue sealants and as drug-delivery vehicles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22426460</pmid><doi>10.1038/nmat3272</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2012-03, Vol.11 (5), p.468-476
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1671325426
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 639/301/54
639/301/923/1028
Adhesives
Adhesives - chemistry
Adsorption
Animals
Binding
Biocompatible Materials - chemistry
Biomaterials
Biomedical materials
Chemistry and Materials Science
CHO Cells
Choline
Condensed Matter Physics
Cricetinae
Cricetulus
Density
Erythrocyte Aggregation
Erythrocytes - chemistry
Erythrocytes - ultrastructure
Glycerol - chemistry
Humans
In Vitro Techniques
Lipid Bilayers - chemistry
Lipids
Macromolecules
Materials Science
Materials Testing
Membrane Lipids - chemistry
Membranes
Microscopy, Electron, Scanning
Models, Anatomic
Nanostructure
Nanostructured materials
Nanotechnology
Optical and Electronic Materials
Phosphates
Phosphorylcholine - chemistry
Plasma - chemistry
Polymers
Polymers - chemistry
Sealants
Self assembly
Static Electricity
title Polyvalent choline phosphate as a universal biomembrane adhesive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyvalent%20choline%20phosphate%20as%20a%20universal%20biomembrane%20adhesive&rft.jtitle=Nature%20materials&rft.au=Yu,%20Xifei&rft.date=2012-03-18&rft.volume=11&rft.issue=5&rft.spage=468&rft.epage=476&rft.pages=468-476&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3272&rft_dat=%3Cproquest_cross%3E1671325426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019184578&rft_id=info:pmid/22426460&rfr_iscdi=true