Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores

This paper concerns energy absorption during projectile penetration of thin, lightweight sandwich panels with metallic fibre cores. The panels were made entirely of austenitic stainless steel (grade 304). The faceplates were 0.4 mm thick and the core (∼1–2 mm thick) was a random assembly of metallic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2011-02, Vol.93 (3), p.1089-1095
Hauptverfasser: Dean, J., S-Fallah, A., Brown, P.M., Louca, L.A., Clyne, T.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns energy absorption during projectile penetration of thin, lightweight sandwich panels with metallic fibre cores. The panels were made entirely of austenitic stainless steel (grade 304). The faceplates were 0.4 mm thick and the core (∼1–2 mm thick) was a random assembly of metallic fibres, consolidated by solid state sintering. The impact tests were simulated using ABAQUS. Faceplate behaviour was modelled using the Johnson and Cook plasticity relation and a strain rate-dependent, critical plastic strain failure criterion. The core was modelled as an anisotropic, compressible continuum, with failure based on a quadratic, shear stress-based criterion. The experimental data show that, with increasing impact velocity, the absorbed energy decreased from the ballistic limit, reached a minimum value, and then underwent a monotonic increase. The FEM modelling demonstrates that this increase arises from the kinetic energy of ejected fragments, while the energy absorbed by plastic deformation and fracture tends to a plateau. Normalised absorbed energies have been compared to values for single faceplates. The sandwich panels are marginally superior to single plates on an areal density basis.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2010.09.019