Decision support systems for effective maintenance operations
To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision suppor...
Gespeichert in:
Veröffentlicht in: | CIRP annals 2012, Vol.61 (1), p.411-414 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 1 |
container_start_page | 411 |
container_title | CIRP annals |
container_volume | 61 |
creator | Ni, Jun Jin, Xiaoning |
description | To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools. |
doi_str_mv | 10.1016/j.cirp.2012.03.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671324929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007850612000674</els_id><sourcerecordid>1671324929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURTOARCn8AaYsSCwJz3ZipxIMqHxKlVhgthznWXLVxMEvrdR_j6tWjExvOfc-3ZNlNwxKBkzer0vr41hyYLwEUYKsz7IZAKiiqUFeZJdEa4C6BsVn2eMzWk8-DDltxzHEKac9TdhT7kLM0Tm0k99h3hs_TDiYwWIeRoxmShm6ys6d2RBen-48-359-Vq-F6vPt4_l06qwQoqpkI1t0cl2gYZXqhZtIxG4kgo7KRrLTWWbTroalVWitZa10hkjWxTSdOg6Mc_ujr1jDD9bpEn3nixuNmbAsCXNpGKCVwu-SCg_ojYGoohOj9H3Ju41A33wo9f64Ecf_GgQOvlJodtTvyFrNi6mnZ7-klwyqFglEvdw5DCN3XmMmqzH5KTzMYnSXfD_vfkFTFB_aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671324929</pqid></control><display><type>article</type><title>Decision support systems for effective maintenance operations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ni, Jun ; Jin, Xiaoning</creator><creatorcontrib>Ni, Jun ; Jin, Xiaoning</creatorcontrib><description>To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.</description><identifier>ISSN: 0007-8506</identifier><identifier>DOI: 10.1016/j.cirp.2012.03.065</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Automotive components ; Decision making ; Decision support systems ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Maintenance ; Manufacturing systems ; Mathematical analysis ; Mathematical models ; Mechanical engineering. Machine design ; Tasks</subject><ispartof>CIRP annals, 2012, Vol.61 (1), p.411-414</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</citedby><cites>FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0007850612000674$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26104143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Jin, Xiaoning</creatorcontrib><title>Decision support systems for effective maintenance operations</title><title>CIRP annals</title><description>To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.</description><subject>Applied sciences</subject><subject>Automotive components</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Maintenance</subject><subject>Manufacturing systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Tasks</subject><issn>0007-8506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURTOARCn8AaYsSCwJz3ZipxIMqHxKlVhgthznWXLVxMEvrdR_j6tWjExvOfc-3ZNlNwxKBkzer0vr41hyYLwEUYKsz7IZAKiiqUFeZJdEa4C6BsVn2eMzWk8-DDltxzHEKac9TdhT7kLM0Tm0k99h3hs_TDiYwWIeRoxmShm6ys6d2RBen-48-359-Vq-F6vPt4_l06qwQoqpkI1t0cl2gYZXqhZtIxG4kgo7KRrLTWWbTroalVWitZa10hkjWxTSdOg6Mc_ujr1jDD9bpEn3nixuNmbAsCXNpGKCVwu-SCg_ojYGoohOj9H3Ju41A33wo9f64Ecf_GgQOvlJodtTvyFrNi6mnZ7-klwyqFglEvdw5DCN3XmMmqzH5KTzMYnSXfD_vfkFTFB_aA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Ni, Jun</creator><creator>Jin, Xiaoning</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Decision support systems for effective maintenance operations</title><author>Ni, Jun ; Jin, Xiaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Automotive components</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Maintenance</topic><topic>Manufacturing systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Jin, Xiaoning</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>CIRP annals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Jun</au><au>Jin, Xiaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision support systems for effective maintenance operations</atitle><jtitle>CIRP annals</jtitle><date>2012</date><risdate>2012</risdate><volume>61</volume><issue>1</issue><spage>411</spage><epage>414</epage><pages>411-414</pages><issn>0007-8506</issn><abstract>To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cirp.2012.03.065</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-8506 |
ispartof | CIRP annals, 2012, Vol.61 (1), p.411-414 |
issn | 0007-8506 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671324929 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Automotive components Decision making Decision support systems Dynamical systems Dynamics Exact sciences and technology Maintenance Manufacturing systems Mathematical analysis Mathematical models Mechanical engineering. Machine design Tasks |
title | Decision support systems for effective maintenance operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20support%20systems%20for%20effective%20maintenance%20operations&rft.jtitle=CIRP%20annals&rft.au=Ni,%20Jun&rft.date=2012&rft.volume=61&rft.issue=1&rft.spage=411&rft.epage=414&rft.pages=411-414&rft.issn=0007-8506&rft_id=info:doi/10.1016/j.cirp.2012.03.065&rft_dat=%3Cproquest_cross%3E1671324929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671324929&rft_id=info:pmid/&rft_els_id=S0007850612000674&rfr_iscdi=true |