Decision support systems for effective maintenance operations

To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision suppor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CIRP annals 2012, Vol.61 (1), p.411-414
Hauptverfasser: Ni, Jun, Jin, Xiaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 1
container_start_page 411
container_title CIRP annals
container_volume 61
creator Ni, Jun
Jin, Xiaoning
description To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.
doi_str_mv 10.1016/j.cirp.2012.03.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671324929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007850612000674</els_id><sourcerecordid>1671324929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURTOARCn8AaYsSCwJz3ZipxIMqHxKlVhgthznWXLVxMEvrdR_j6tWjExvOfc-3ZNlNwxKBkzer0vr41hyYLwEUYKsz7IZAKiiqUFeZJdEa4C6BsVn2eMzWk8-DDltxzHEKac9TdhT7kLM0Tm0k99h3hs_TDiYwWIeRoxmShm6ys6d2RBen-48-359-Vq-F6vPt4_l06qwQoqpkI1t0cl2gYZXqhZtIxG4kgo7KRrLTWWbTroalVWitZa10hkjWxTSdOg6Mc_ujr1jDD9bpEn3nixuNmbAsCXNpGKCVwu-SCg_ojYGoohOj9H3Ju41A33wo9f64Ecf_GgQOvlJodtTvyFrNi6mnZ7-klwyqFglEvdw5DCN3XmMmqzH5KTzMYnSXfD_vfkFTFB_aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671324929</pqid></control><display><type>article</type><title>Decision support systems for effective maintenance operations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ni, Jun ; Jin, Xiaoning</creator><creatorcontrib>Ni, Jun ; Jin, Xiaoning</creatorcontrib><description>To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.</description><identifier>ISSN: 0007-8506</identifier><identifier>DOI: 10.1016/j.cirp.2012.03.065</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Automotive components ; Decision making ; Decision support systems ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Maintenance ; Manufacturing systems ; Mathematical analysis ; Mathematical models ; Mechanical engineering. Machine design ; Tasks</subject><ispartof>CIRP annals, 2012, Vol.61 (1), p.411-414</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</citedby><cites>FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0007850612000674$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26104143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Jin, Xiaoning</creatorcontrib><title>Decision support systems for effective maintenance operations</title><title>CIRP annals</title><description>To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.</description><subject>Applied sciences</subject><subject>Automotive components</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Maintenance</subject><subject>Manufacturing systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Tasks</subject><issn>0007-8506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURTOARCn8AaYsSCwJz3ZipxIMqHxKlVhgthznWXLVxMEvrdR_j6tWjExvOfc-3ZNlNwxKBkzer0vr41hyYLwEUYKsz7IZAKiiqUFeZJdEa4C6BsVn2eMzWk8-DDltxzHEKac9TdhT7kLM0Tm0k99h3hs_TDiYwWIeRoxmShm6ys6d2RBen-48-359-Vq-F6vPt4_l06qwQoqpkI1t0cl2gYZXqhZtIxG4kgo7KRrLTWWbTroalVWitZa10hkjWxTSdOg6Mc_ujr1jDD9bpEn3nixuNmbAsCXNpGKCVwu-SCg_ojYGoohOj9H3Ju41A33wo9f64Ecf_GgQOvlJodtTvyFrNi6mnZ7-klwyqFglEvdw5DCN3XmMmqzH5KTzMYnSXfD_vfkFTFB_aA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Ni, Jun</creator><creator>Jin, Xiaoning</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Decision support systems for effective maintenance operations</title><author>Ni, Jun ; Jin, Xiaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-68cbef6b9ea24753b86e02767ed638c2a4c8d6f5e7c73bcc1b6faa6be36adefd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Automotive components</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Maintenance</topic><topic>Manufacturing systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Jin, Xiaoning</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>CIRP annals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Jun</au><au>Jin, Xiaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision support systems for effective maintenance operations</atitle><jtitle>CIRP annals</jtitle><date>2012</date><risdate>2012</risdate><volume>61</volume><issue>1</issue><spage>411</spage><epage>414</epage><pages>411-414</pages><issn>0007-8506</issn><abstract>To compete successfully in the market place, leading manufacturing companies are pursuing effective maintenance operations. Existing computerized maintenance management systems (CMMS) can no longer meet the needs of dynamic maintenance operations. This paper describes newly developed decision support tools for effective maintenance operations: (1) data-driven short-term throughput bottleneck identification, (2) estimation of maintenance windows of opportunity, (3) prioritization of maintenance tasks, (4) joint production and maintenance scheduling systems, and (5) maintenance staff management. Mathematical algorithms and simulation tools are utilized to illustrate the concepts of these decision support systems. Results from real implementations in automotive manufacturing are presented to demonstrate the effectiveness of these tools.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cirp.2012.03.065</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-8506
ispartof CIRP annals, 2012, Vol.61 (1), p.411-414
issn 0007-8506
language eng
recordid cdi_proquest_miscellaneous_1671324929
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Automotive components
Decision making
Decision support systems
Dynamical systems
Dynamics
Exact sciences and technology
Maintenance
Manufacturing systems
Mathematical analysis
Mathematical models
Mechanical engineering. Machine design
Tasks
title Decision support systems for effective maintenance operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20support%20systems%20for%20effective%20maintenance%20operations&rft.jtitle=CIRP%20annals&rft.au=Ni,%20Jun&rft.date=2012&rft.volume=61&rft.issue=1&rft.spage=411&rft.epage=414&rft.pages=411-414&rft.issn=0007-8506&rft_id=info:doi/10.1016/j.cirp.2012.03.065&rft_dat=%3Cproquest_cross%3E1671324929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671324929&rft_id=info:pmid/&rft_els_id=S0007850612000674&rfr_iscdi=true