Piecewise-smooth chebfuns
Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automa...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2010-10, Vol.30 (4), p.898-916 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 916 |
---|---|
container_issue | 4 |
container_start_page | 898 |
container_title | IMA journal of numerical analysis |
container_volume | 30 |
creator | Pachón, Ricardo Platte, Rodrigo B. Trefethen, Lloyd N. |
description | Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1]. |
doi_str_mv | 10.1093/imanum/drp008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671324398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671324398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-93780f4fd2c2b1dd534a45f95db6972dba64bbf8797cd954e94d83b87e1965c03</originalsourceid><addsrcrecordid>eNpFkLtKA0EUQAdRMEZLCzsbwWbMvGen1BCNEtBCJdgM8ySr-4gzu6h_b2RDrG5xzz1wDwCnGF1hpOikrE3T1xOf1ggVe2CEmWCQCkb2wQgRSSBTUh2Co5zfEUJMSDQCZ09lcOGrzAHmum271blbBRv7Jh-Dg2iqHE62cwxebmfP0zlcPN7dT68X0FEpO6ioLFBk0RNHLPaeU2YYj4p7K5Qk3hrBrI2FVNJ5xVlQzBfUFjJgJbhDdAwuB-86tZ99yJ2uy-xCVZkmtH3WWEhMCaOq2KBwQF1qc04h6nXaPJ1-NEb6L4EeEughwYa_2KpNdqaKyTSuzLsjQmnBsOD_3jJ34Xu3N-lDC0kl1_Plm1YL9XozfxB6SX8B2-pr9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671324398</pqid></control><display><type>article</type><title>Piecewise-smooth chebfuns</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pachón, Ricardo ; Platte, Rodrigo B. ; Trefethen, Lloyd N.</creator><creatorcontrib>Pachón, Ricardo ; Platte, Rodrigo B. ; Trefethen, Lloyd N.</creatorcontrib><description>Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drp008</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Approximations and expansions ; barycentric interpolation ; chebfun system ; Chebyshev series ; Edge detection ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Matlab ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Object oriented ; Object-oriented programming ; Real functions ; Sciences and techniques of general use ; Subdivisions</subject><ispartof>IMA journal of numerical analysis, 2010-10, Vol.30 (4), p.898-916</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-93780f4fd2c2b1dd534a45f95db6972dba64bbf8797cd954e94d83b87e1965c03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23384165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pachón, Ricardo</creatorcontrib><creatorcontrib>Platte, Rodrigo B.</creatorcontrib><creatorcontrib>Trefethen, Lloyd N.</creatorcontrib><title>Piecewise-smooth chebfuns</title><title>IMA journal of numerical analysis</title><description>Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].</description><subject>Algorithms</subject><subject>Approximations and expansions</subject><subject>barycentric interpolation</subject><subject>chebfun system</subject><subject>Chebyshev series</subject><subject>Edge detection</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matlab</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Object oriented</subject><subject>Object-oriented programming</subject><subject>Real functions</subject><subject>Sciences and techniques of general use</subject><subject>Subdivisions</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkLtKA0EUQAdRMEZLCzsbwWbMvGen1BCNEtBCJdgM8ySr-4gzu6h_b2RDrG5xzz1wDwCnGF1hpOikrE3T1xOf1ggVe2CEmWCQCkb2wQgRSSBTUh2Co5zfEUJMSDQCZ09lcOGrzAHmum271blbBRv7Jh-Dg2iqHE62cwxebmfP0zlcPN7dT68X0FEpO6ioLFBk0RNHLPaeU2YYj4p7K5Qk3hrBrI2FVNJ5xVlQzBfUFjJgJbhDdAwuB-86tZ99yJ2uy-xCVZkmtH3WWEhMCaOq2KBwQF1qc04h6nXaPJ1-NEb6L4EeEughwYa_2KpNdqaKyTSuzLsjQmnBsOD_3jJ34Xu3N-lDC0kl1_Plm1YL9XozfxB6SX8B2-pr9g</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Pachón, Ricardo</creator><creator>Platte, Rodrigo B.</creator><creator>Trefethen, Lloyd N.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Piecewise-smooth chebfuns</title><author>Pachón, Ricardo ; Platte, Rodrigo B. ; Trefethen, Lloyd N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-93780f4fd2c2b1dd534a45f95db6972dba64bbf8797cd954e94d83b87e1965c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximations and expansions</topic><topic>barycentric interpolation</topic><topic>chebfun system</topic><topic>Chebyshev series</topic><topic>Edge detection</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matlab</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Object oriented</topic><topic>Object-oriented programming</topic><topic>Real functions</topic><topic>Sciences and techniques of general use</topic><topic>Subdivisions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pachón, Ricardo</creatorcontrib><creatorcontrib>Platte, Rodrigo B.</creatorcontrib><creatorcontrib>Trefethen, Lloyd N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pachón, Ricardo</au><au>Platte, Rodrigo B.</au><au>Trefethen, Lloyd N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise-smooth chebfuns</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>30</volume><issue>4</issue><spage>898</spage><epage>916</epage><pages>898-916</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/drp008</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2010-10, Vol.30 (4), p.898-916 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671324398 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Algorithms Approximations and expansions barycentric interpolation chebfun system Chebyshev series Edge detection Exact sciences and technology Mathematical analysis Mathematical models Mathematics Matlab Numerical analysis Numerical analysis. Scientific computation Numerical approximation Object oriented Object-oriented programming Real functions Sciences and techniques of general use Subdivisions |
title | Piecewise-smooth chebfuns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise-smooth%20chebfuns&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Pach%C3%B3n,%20Ricardo&rft.date=2010-10-01&rft.volume=30&rft.issue=4&rft.spage=898&rft.epage=916&rft.pages=898-916&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/drp008&rft_dat=%3Cproquest_cross%3E1671324398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671324398&rft_id=info:pmid/&rfr_iscdi=true |