Piecewise-smooth chebfuns

Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2010-10, Vol.30 (4), p.898-916
Hauptverfasser: Pachón, Ricardo, Platte, Rodrigo B., Trefethen, Lloyd N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 4
container_start_page 898
container_title IMA journal of numerical analysis
container_volume 30
creator Pachón, Ricardo
Platte, Rodrigo B.
Trefethen, Lloyd N.
description Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].
doi_str_mv 10.1093/imanum/drp008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671324398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671324398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-93780f4fd2c2b1dd534a45f95db6972dba64bbf8797cd954e94d83b87e1965c03</originalsourceid><addsrcrecordid>eNpFkLtKA0EUQAdRMEZLCzsbwWbMvGen1BCNEtBCJdgM8ySr-4gzu6h_b2RDrG5xzz1wDwCnGF1hpOikrE3T1xOf1ggVe2CEmWCQCkb2wQgRSSBTUh2Co5zfEUJMSDQCZ09lcOGrzAHmum271blbBRv7Jh-Dg2iqHE62cwxebmfP0zlcPN7dT68X0FEpO6ioLFBk0RNHLPaeU2YYj4p7K5Qk3hrBrI2FVNJ5xVlQzBfUFjJgJbhDdAwuB-86tZ99yJ2uy-xCVZkmtH3WWEhMCaOq2KBwQF1qc04h6nXaPJ1-NEb6L4EeEughwYa_2KpNdqaKyTSuzLsjQmnBsOD_3jJ34Xu3N-lDC0kl1_Plm1YL9XozfxB6SX8B2-pr9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671324398</pqid></control><display><type>article</type><title>Piecewise-smooth chebfuns</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pachón, Ricardo ; Platte, Rodrigo B. ; Trefethen, Lloyd N.</creator><creatorcontrib>Pachón, Ricardo ; Platte, Rodrigo B. ; Trefethen, Lloyd N.</creatorcontrib><description>Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drp008</identifier><identifier>CODEN: IJNADH</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Approximations and expansions ; barycentric interpolation ; chebfun system ; Chebyshev series ; Edge detection ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Matlab ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Object oriented ; Object-oriented programming ; Real functions ; Sciences and techniques of general use ; Subdivisions</subject><ispartof>IMA journal of numerical analysis, 2010-10, Vol.30 (4), p.898-916</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-93780f4fd2c2b1dd534a45f95db6972dba64bbf8797cd954e94d83b87e1965c03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23384165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pachón, Ricardo</creatorcontrib><creatorcontrib>Platte, Rodrigo B.</creatorcontrib><creatorcontrib>Trefethen, Lloyd N.</creatorcontrib><title>Piecewise-smooth chebfuns</title><title>IMA journal of numerical analysis</title><description>Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].</description><subject>Algorithms</subject><subject>Approximations and expansions</subject><subject>barycentric interpolation</subject><subject>chebfun system</subject><subject>Chebyshev series</subject><subject>Edge detection</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matlab</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Object oriented</subject><subject>Object-oriented programming</subject><subject>Real functions</subject><subject>Sciences and techniques of general use</subject><subject>Subdivisions</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkLtKA0EUQAdRMEZLCzsbwWbMvGen1BCNEtBCJdgM8ySr-4gzu6h_b2RDrG5xzz1wDwCnGF1hpOikrE3T1xOf1ggVe2CEmWCQCkb2wQgRSSBTUh2Co5zfEUJMSDQCZ09lcOGrzAHmum271blbBRv7Jh-Dg2iqHE62cwxebmfP0zlcPN7dT68X0FEpO6ioLFBk0RNHLPaeU2YYj4p7K5Qk3hrBrI2FVNJ5xVlQzBfUFjJgJbhDdAwuB-86tZ99yJ2uy-xCVZkmtH3WWEhMCaOq2KBwQF1qc04h6nXaPJ1-NEb6L4EeEughwYa_2KpNdqaKyTSuzLsjQmnBsOD_3jJ34Xu3N-lDC0kl1_Plm1YL9XozfxB6SX8B2-pr9g</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Pachón, Ricardo</creator><creator>Platte, Rodrigo B.</creator><creator>Trefethen, Lloyd N.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>Piecewise-smooth chebfuns</title><author>Pachón, Ricardo ; Platte, Rodrigo B. ; Trefethen, Lloyd N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-93780f4fd2c2b1dd534a45f95db6972dba64bbf8797cd954e94d83b87e1965c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximations and expansions</topic><topic>barycentric interpolation</topic><topic>chebfun system</topic><topic>Chebyshev series</topic><topic>Edge detection</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matlab</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Object oriented</topic><topic>Object-oriented programming</topic><topic>Real functions</topic><topic>Sciences and techniques of general use</topic><topic>Subdivisions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pachón, Ricardo</creatorcontrib><creatorcontrib>Platte, Rodrigo B.</creatorcontrib><creatorcontrib>Trefethen, Lloyd N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pachón, Ricardo</au><au>Platte, Rodrigo B.</au><au>Trefethen, Lloyd N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise-smooth chebfuns</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>30</volume><issue>4</issue><spage>898</spage><epage>916</epage><pages>898-916</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><coden>IJNADH</coden><abstract>Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Break points are introduced in some such calculations at points determined by numerical root finding and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an extension of the chebfun system, which was previously limited to smooth functions on [ – 1, 1].</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imanum/drp008</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2010-10, Vol.30 (4), p.898-916
issn 0272-4979
1464-3642
language eng
recordid cdi_proquest_miscellaneous_1671324398
source Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Approximations and expansions
barycentric interpolation
chebfun system
Chebyshev series
Edge detection
Exact sciences and technology
Mathematical analysis
Mathematical models
Mathematics
Matlab
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Object oriented
Object-oriented programming
Real functions
Sciences and techniques of general use
Subdivisions
title Piecewise-smooth chebfuns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise-smooth%20chebfuns&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Pach%C3%B3n,%20Ricardo&rft.date=2010-10-01&rft.volume=30&rft.issue=4&rft.spage=898&rft.epage=916&rft.pages=898-916&rft.issn=0272-4979&rft.eissn=1464-3642&rft.coden=IJNADH&rft_id=info:doi/10.1093/imanum/drp008&rft_dat=%3Cproquest_cross%3E1671324398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671324398&rft_id=info:pmid/&rfr_iscdi=true