Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane

The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2010-08, Vol.164 (2), p.213-229
Hauptverfasser: Zhang, Pei-Wei, Zhou, Zhen-Gong, Wu, Lin-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 2
container_start_page 213
container_title International journal of fracture
container_volume 164
creator Zhang, Pei-Wei
Zhou, Zhen-Gong
Wu, Lin-Zhi
description The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.
doi_str_mv 10.1007/s10704-010-9477-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671324097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259829503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-7c7ad4de9d79626b45812072ee2b0b30e54bc68fc7a019b5be58bae60a789b7f3</originalsourceid><addsrcrecordid>eNp1kE1LHTEUhoNY8Gr7A7oLlIKb6MnHJJOliF8gumnXIZN7RmNnJmMyd2F_fXO9YkFwFZLznIc3LyHfOZxwAHNaOBhQDDgwq4xheo-seGMkE9rIfbICaXSdCHtADkt5AgBrWrUieJcmNqTgB7o8YsovtKRhs8Q00dRTT8e0RnZDQ_bhD41TfZkj_k04YFhyDKevt9E_TLjEQEMa51TignT0C-ZYrfPgJ_xKvvR-KPjt7Twivy8vfp1fs9v7q5vzs1sWpLELM8H4tVqjXRurhe5U03IBRiCKDjoJ2Kgu6LavGHDbNR02bedRgzet7Uwvj8jxzjvn9LzBsrgxloDDNkPaFMe14VKo-veK_viAPqVNnmo6J0RjW2EbkJXiOyrkVErG3s05jj6_OA5uW7zbFe9q8W5bvNN15-eb2Zfaa5_9FGJ5XxTV3CipKid2XKmj6QHz_wSfy_8BydSTNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259829503</pqid></control><display><type>article</type><title>Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane</title><source>SpringerLink Journals</source><creator>Zhang, Pei-Wei ; Zhou, Zhen-Gong ; Wu, Lin-Zhi</creator><creatorcontrib>Zhang, Pei-Wei ; Zhou, Zhen-Gong ; Wu, Lin-Zhi</creatorcontrib><description>The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-010-9477-6</identifier><identifier>CODEN: IJFRAP</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Composite materials ; Crack tips ; Displacements (lattice) ; Elasticity ; Exact sciences and technology ; Fourier transforms ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Hoop stress ; Inelasticity (thermoplasticity, viscoplasticity...) ; Integral equations ; Magnetic flux ; Magnetic permeability ; Materials Science ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Original Paper ; Physics ; Piezoelectricity ; Planes ; Polynomials ; Schmidt method ; Singularities ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress distribution ; Stresses ; Structural and continuum mechanics</subject><ispartof>International journal of fracture, 2010-08, Vol.164 (2), p.213-229</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>2015 INIST-CNRS</rights><rights>International Journal of Fracture is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-7c7ad4de9d79626b45812072ee2b0b30e54bc68fc7a019b5be58bae60a789b7f3</citedby><cites>FETCH-LOGICAL-c379t-7c7ad4de9d79626b45812072ee2b0b30e54bc68fc7a019b5be58bae60a789b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-010-9477-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-010-9477-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22955434$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pei-Wei</creatorcontrib><creatorcontrib>Zhou, Zhen-Gong</creatorcontrib><creatorcontrib>Wu, Lin-Zhi</creatorcontrib><title>Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.</description><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Crack tips</subject><subject>Displacements (lattice)</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hoop stress</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Integral equations</subject><subject>Magnetic flux</subject><subject>Magnetic permeability</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>Planes</subject><subject>Polynomials</subject><subject>Schmidt method</subject><subject>Singularities</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress distribution</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LHTEUhoNY8Gr7A7oLlIKb6MnHJJOliF8gumnXIZN7RmNnJmMyd2F_fXO9YkFwFZLznIc3LyHfOZxwAHNaOBhQDDgwq4xheo-seGMkE9rIfbICaXSdCHtADkt5AgBrWrUieJcmNqTgB7o8YsovtKRhs8Q00dRTT8e0RnZDQ_bhD41TfZkj_k04YFhyDKevt9E_TLjEQEMa51TignT0C-ZYrfPgJ_xKvvR-KPjt7Twivy8vfp1fs9v7q5vzs1sWpLELM8H4tVqjXRurhe5U03IBRiCKDjoJ2Kgu6LavGHDbNR02bedRgzet7Uwvj8jxzjvn9LzBsrgxloDDNkPaFMe14VKo-veK_viAPqVNnmo6J0RjW2EbkJXiOyrkVErG3s05jj6_OA5uW7zbFe9q8W5bvNN15-eb2Zfaa5_9FGJ5XxTV3CipKid2XKmj6QHz_wSfy_8BydSTNQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Zhang, Pei-Wei</creator><creator>Zhou, Zhen-Gong</creator><creator>Wu, Lin-Zhi</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20100801</creationdate><title>Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane</title><author>Zhang, Pei-Wei ; Zhou, Zhen-Gong ; Wu, Lin-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-7c7ad4de9d79626b45812072ee2b0b30e54bc68fc7a019b5be58bae60a789b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Crack tips</topic><topic>Displacements (lattice)</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hoop stress</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Integral equations</topic><topic>Magnetic flux</topic><topic>Magnetic permeability</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>Planes</topic><topic>Polynomials</topic><topic>Schmidt method</topic><topic>Singularities</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress distribution</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pei-Wei</creatorcontrib><creatorcontrib>Zhou, Zhen-Gong</creatorcontrib><creatorcontrib>Wu, Lin-Zhi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pei-Wei</au><au>Zhou, Zhen-Gong</au><au>Wu, Lin-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>164</volume><issue>2</issue><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><coden>IJFRAP</coden><abstract>The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-010-9477-6</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2010-08, Vol.164 (2), p.213-229
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_miscellaneous_1671324097
source SpringerLink Journals
subjects Automotive Engineering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Composite materials
Crack tips
Displacements (lattice)
Elasticity
Exact sciences and technology
Fourier transforms
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Hoop stress
Inelasticity (thermoplasticity, viscoplasticity...)
Integral equations
Magnetic flux
Magnetic permeability
Materials Science
Mathematical analysis
Mathematical models
Mechanical Engineering
Original Paper
Physics
Piezoelectricity
Planes
Polynomials
Schmidt method
Singularities
Solid mechanics
Static elasticity (thermoelasticity...)
Stress distribution
Stresses
Structural and continuum mechanics
title Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-local%20theory%20solution%20of%20a%20mode-I%20crack%20in%20a%20piezoelectric/piezomagnetic%20composite%20material%20plane&rft.jtitle=International%20journal%20of%20fracture&rft.au=Zhang,%20Pei-Wei&rft.date=2010-08-01&rft.volume=164&rft.issue=2&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=0376-9429&rft.eissn=1573-2673&rft.coden=IJFRAP&rft_id=info:doi/10.1007/s10704-010-9477-6&rft_dat=%3Cproquest_cross%3E2259829503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259829503&rft_id=info:pmid/&rfr_iscdi=true