Two-phase closed thermosyphon vapor-chamber system for electronic cooling

This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2010-05, Vol.37 (5), p.484-489
Hauptverfasser: Tsai, Te-En, Wu, Hsin-Hsuan, Chang, Chih-Chung, Chen, Sih-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 5
container_start_page 484
container_title International communications in heat and mass transfer
container_volume 37
creator Tsai, Te-En
Wu, Hsin-Hsuan
Chang, Chih-Chung
Chen, Sih-Li
description This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140 W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495 °C W − 1.
doi_str_mv 10.1016/j.icheatmasstransfer.2010.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671322008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193310000333</els_id><sourcerecordid>1671322008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhUVJoZu0_8GXQi7ezki7ln1rCW2aEOglPYuxPK612JarcVL231dhQy65BB7MYT7em3lKXSJsEbD6ctgGPzCtE4msiWbpOW015DVgFrxTG6xtUwLa-kxtwJp9iY0xH9S5yAEAsMZ6o27u_8VyGUi48GMU7op14DRFOS5DnItHWmIq_UBTy6mQo6w8FX1MBY_s1xTn4Asf4xjmPx_V-55G4U_P80L9_vH9_upneffr-ubq213pdxbXEtvWUAsd7vKxRBU13rR727bEwKwZNFngvtprtoZ2vG96T7uurrpeG18Zc6EuT75Lin8fWFY3BfE8jjRzfBCHlUWjNUCd0a8n1Kcokrh3SwoTpaNDcE8tuoN73aJ7atEBZkG2-PycRuJp7DPjg7z4aG2rukHM3O2J4_z6Y8gu4gPPnruQclOui-Htof8B0_SWkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671322008</pqid></control><display><type>article</type><title>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tsai, Te-En ; Wu, Hsin-Hsuan ; Chang, Chih-Chung ; Chen, Sih-Li</creator><creatorcontrib>Tsai, Te-En ; Wu, Hsin-Hsuan ; Chang, Chih-Chung ; Chen, Sih-Li</creatorcontrib><description>This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140 W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495 °C W − 1.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2010.01.010</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling enhancement ; Cooling systems ; Design. Technologies. Operation analysis. Testing ; Electronic cooling ; Electronics ; Evaporation ; Exact sciences and technology ; Heat transfer ; Heating ; Integrated circuits ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surface structure ; Thermal resistance ; Thermosyphon ; Thermosyphons ; Vapor chamber</subject><ispartof>International communications in heat and mass transfer, 2010-05, Vol.37 (5), p.484-489</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</citedby><cites>FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icheatmasstransfer.2010.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22768911$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Te-En</creatorcontrib><creatorcontrib>Wu, Hsin-Hsuan</creatorcontrib><creatorcontrib>Chang, Chih-Chung</creatorcontrib><creatorcontrib>Chen, Sih-Li</creatorcontrib><title>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</title><title>International communications in heat and mass transfer</title><description>This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140 W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495 °C W − 1.</description><subject>Applied sciences</subject><subject>Boiling enhancement</subject><subject>Cooling systems</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic cooling</subject><subject>Electronics</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Integrated circuits</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surface structure</subject><subject>Thermal resistance</subject><subject>Thermosyphon</subject><subject>Thermosyphons</subject><subject>Vapor chamber</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhUVJoZu0_8GXQi7ezki7ln1rCW2aEOglPYuxPK612JarcVL231dhQy65BB7MYT7em3lKXSJsEbD6ctgGPzCtE4msiWbpOW015DVgFrxTG6xtUwLa-kxtwJp9iY0xH9S5yAEAsMZ6o27u_8VyGUi48GMU7op14DRFOS5DnItHWmIq_UBTy6mQo6w8FX1MBY_s1xTn4Asf4xjmPx_V-55G4U_P80L9_vH9_upneffr-ubq213pdxbXEtvWUAsd7vKxRBU13rR727bEwKwZNFngvtprtoZ2vG96T7uurrpeG18Zc6EuT75Lin8fWFY3BfE8jjRzfBCHlUWjNUCd0a8n1Kcokrh3SwoTpaNDcE8tuoN73aJ7atEBZkG2-PycRuJp7DPjg7z4aG2rukHM3O2J4_z6Y8gu4gPPnruQclOui-Htof8B0_SWkg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Tsai, Te-En</creator><creator>Wu, Hsin-Hsuan</creator><creator>Chang, Chih-Chung</creator><creator>Chen, Sih-Li</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</title><author>Tsai, Te-En ; Wu, Hsin-Hsuan ; Chang, Chih-Chung ; Chen, Sih-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Boiling enhancement</topic><topic>Cooling systems</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic cooling</topic><topic>Electronics</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Integrated circuits</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surface structure</topic><topic>Thermal resistance</topic><topic>Thermosyphon</topic><topic>Thermosyphons</topic><topic>Vapor chamber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Te-En</creatorcontrib><creatorcontrib>Wu, Hsin-Hsuan</creatorcontrib><creatorcontrib>Chang, Chih-Chung</creatorcontrib><creatorcontrib>Chen, Sih-Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Te-En</au><au>Wu, Hsin-Hsuan</au><au>Chang, Chih-Chung</au><au>Chen, Sih-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>37</volume><issue>5</issue><spage>484</spage><epage>489</epage><pages>484-489</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140 W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495 °C W − 1.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2010.01.010</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2010-05, Vol.37 (5), p.484-489
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1671322008
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Boiling enhancement
Cooling systems
Design. Technologies. Operation analysis. Testing
Electronic cooling
Electronics
Evaporation
Exact sciences and technology
Heat transfer
Heating
Integrated circuits
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Surface structure
Thermal resistance
Thermosyphon
Thermosyphons
Vapor chamber
title Two-phase closed thermosyphon vapor-chamber system for electronic cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-phase%20closed%20thermosyphon%20vapor-chamber%20system%20for%20electronic%20cooling&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Tsai,%20Te-En&rft.date=2010-05-01&rft.volume=37&rft.issue=5&rft.spage=484&rft.epage=489&rft.pages=484-489&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2010.01.010&rft_dat=%3Cproquest_cross%3E1671322008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671322008&rft_id=info:pmid/&rft_els_id=S0735193310000333&rfr_iscdi=true