Two-phase closed thermosyphon vapor-chamber system for electronic cooling
This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2010-05, Vol.37 (5), p.484-489 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 5 |
container_start_page | 484 |
container_title | International communications in heat and mass transfer |
container_volume | 37 |
creator | Tsai, Te-En Wu, Hsin-Hsuan Chang, Chih-Chung Chen, Sih-Li |
description | This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140
W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495
°C
W
−
1. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2010.01.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671322008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193310000333</els_id><sourcerecordid>1671322008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhUVJoZu0_8GXQi7ezki7ln1rCW2aEOglPYuxPK612JarcVL231dhQy65BB7MYT7em3lKXSJsEbD6ctgGPzCtE4msiWbpOW015DVgFrxTG6xtUwLa-kxtwJp9iY0xH9S5yAEAsMZ6o27u_8VyGUi48GMU7op14DRFOS5DnItHWmIq_UBTy6mQo6w8FX1MBY_s1xTn4Asf4xjmPx_V-55G4U_P80L9_vH9_upneffr-ubq213pdxbXEtvWUAsd7vKxRBU13rR727bEwKwZNFngvtprtoZ2vG96T7uurrpeG18Zc6EuT75Lin8fWFY3BfE8jjRzfBCHlUWjNUCd0a8n1Kcokrh3SwoTpaNDcE8tuoN73aJ7atEBZkG2-PycRuJp7DPjg7z4aG2rukHM3O2J4_z6Y8gu4gPPnruQclOui-Htof8B0_SWkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671322008</pqid></control><display><type>article</type><title>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tsai, Te-En ; Wu, Hsin-Hsuan ; Chang, Chih-Chung ; Chen, Sih-Li</creator><creatorcontrib>Tsai, Te-En ; Wu, Hsin-Hsuan ; Chang, Chih-Chung ; Chen, Sih-Li</creatorcontrib><description>This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140
W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495
°C
W
−
1.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2010.01.010</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling enhancement ; Cooling systems ; Design. Technologies. Operation analysis. Testing ; Electronic cooling ; Electronics ; Evaporation ; Exact sciences and technology ; Heat transfer ; Heating ; Integrated circuits ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Surface structure ; Thermal resistance ; Thermosyphon ; Thermosyphons ; Vapor chamber</subject><ispartof>International communications in heat and mass transfer, 2010-05, Vol.37 (5), p.484-489</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</citedby><cites>FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icheatmasstransfer.2010.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22768911$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Te-En</creatorcontrib><creatorcontrib>Wu, Hsin-Hsuan</creatorcontrib><creatorcontrib>Chang, Chih-Chung</creatorcontrib><creatorcontrib>Chen, Sih-Li</creatorcontrib><title>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</title><title>International communications in heat and mass transfer</title><description>This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140
W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495
°C
W
−
1.</description><subject>Applied sciences</subject><subject>Boiling enhancement</subject><subject>Cooling systems</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic cooling</subject><subject>Electronics</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Integrated circuits</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Surface structure</subject><subject>Thermal resistance</subject><subject>Thermosyphon</subject><subject>Thermosyphons</subject><subject>Vapor chamber</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhUVJoZu0_8GXQi7ezki7ln1rCW2aEOglPYuxPK612JarcVL231dhQy65BB7MYT7em3lKXSJsEbD6ctgGPzCtE4msiWbpOW015DVgFrxTG6xtUwLa-kxtwJp9iY0xH9S5yAEAsMZ6o27u_8VyGUi48GMU7op14DRFOS5DnItHWmIq_UBTy6mQo6w8FX1MBY_s1xTn4Asf4xjmPx_V-55G4U_P80L9_vH9_upneffr-ubq213pdxbXEtvWUAsd7vKxRBU13rR727bEwKwZNFngvtprtoZ2vG96T7uurrpeG18Zc6EuT75Lin8fWFY3BfE8jjRzfBCHlUWjNUCd0a8n1Kcokrh3SwoTpaNDcE8tuoN73aJ7atEBZkG2-PycRuJp7DPjg7z4aG2rukHM3O2J4_z6Y8gu4gPPnruQclOui-Htof8B0_SWkg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Tsai, Te-En</creator><creator>Wu, Hsin-Hsuan</creator><creator>Chang, Chih-Chung</creator><creator>Chen, Sih-Li</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</title><author>Tsai, Te-En ; Wu, Hsin-Hsuan ; Chang, Chih-Chung ; Chen, Sih-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-1bb3ab0d14201aa6a9c3b57bbae0ee2e02a70ef652e73a4e59fca4d86df23c633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Boiling enhancement</topic><topic>Cooling systems</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic cooling</topic><topic>Electronics</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Integrated circuits</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Surface structure</topic><topic>Thermal resistance</topic><topic>Thermosyphon</topic><topic>Thermosyphons</topic><topic>Vapor chamber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Te-En</creatorcontrib><creatorcontrib>Wu, Hsin-Hsuan</creatorcontrib><creatorcontrib>Chang, Chih-Chung</creatorcontrib><creatorcontrib>Chen, Sih-Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Te-En</au><au>Wu, Hsin-Hsuan</au><au>Chang, Chih-Chung</au><au>Chen, Sih-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-phase closed thermosyphon vapor-chamber system for electronic cooling</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>37</volume><issue>5</issue><spage>484</spage><epage>489</epage><pages>484-489</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140
W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495
°C
W
−
1.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2010.01.010</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2010-05, Vol.37 (5), p.484-489 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671322008 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Boiling enhancement Cooling systems Design. Technologies. Operation analysis. Testing Electronic cooling Electronics Evaporation Exact sciences and technology Heat transfer Heating Integrated circuits Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Surface structure Thermal resistance Thermosyphon Thermosyphons Vapor chamber |
title | Two-phase closed thermosyphon vapor-chamber system for electronic cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-phase%20closed%20thermosyphon%20vapor-chamber%20system%20for%20electronic%20cooling&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Tsai,%20Te-En&rft.date=2010-05-01&rft.volume=37&rft.issue=5&rft.spage=484&rft.epage=489&rft.pages=484-489&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2010.01.010&rft_dat=%3Cproquest_cross%3E1671322008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671322008&rft_id=info:pmid/&rft_els_id=S0735193310000333&rfr_iscdi=true |