Local shape descriptor selection for object recognition in range data

► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 2011-05, Vol.115 (5), p.681-694
Hauptverfasser: Taati, Babak, Greenspan, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 5
container_start_page 681
container_title Computer vision and image understanding
container_volume 115
creator Taati, Babak
Greenspan, Michael
description ► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks. Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.
doi_str_mv 10.1016/j.cviu.2010.11.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671319941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210002614</els_id><sourcerecordid>1671319941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU89emnNJG1qwIss6x9Y8KLgLSTpdE3pNjXpLvjtTV3Pnmbe472B-RFyDbQACuK2K-zB7QtGZwMKyuCELIBKmjNefZzOe13nHEp2Ti5i7CgFKCUsyHrjre6z-KlHzBqMNrhx8iGL2KOdnB-yNilvuqSygNZvB_druyELetimkp70JTlrdR_x6m8uyfvj-m31nG9en15WD5vccs6nvDEGqa0YZRyxrIwQUjKqbSskbVFC2wjNUNwxlKXhjQHNDCtrwzlSKqqSL8nN8e4Y_Nce46R2Llrsez2g30cFogYOUpaQouwYtcHHGLBVY3A7Hb4VUDUzU52amamZmQJQiVkq3R9LmJ44OAwqWoeDxcal3yfVePdf_QfFHnVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671319941</pqid></control><display><type>article</type><title>Local shape descriptor selection for object recognition in range data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Taati, Babak ; Greenspan, Michael</creator><creatorcontrib>Taati, Babak ; Greenspan, Michael</creatorcontrib><description>► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks. Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.11.021</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>3-D registration ; Lidar ; Local shape descriptor ; Mathematical models ; Object recognition ; Optimization ; Point matching ; Pose acquisition ; Range data ; Similarity ; Tasks ; Tuning</subject><ispartof>Computer vision and image understanding, 2011-05, Vol.115 (5), p.681-694</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</citedby><cites>FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cviu.2010.11.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Taati, Babak</creatorcontrib><creatorcontrib>Greenspan, Michael</creatorcontrib><title>Local shape descriptor selection for object recognition in range data</title><title>Computer vision and image understanding</title><description>► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks. Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.</description><subject>3-D registration</subject><subject>Lidar</subject><subject>Local shape descriptor</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Point matching</subject><subject>Pose acquisition</subject><subject>Range data</subject><subject>Similarity</subject><subject>Tasks</subject><subject>Tuning</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU89emnNJG1qwIss6x9Y8KLgLSTpdE3pNjXpLvjtTV3Pnmbe472B-RFyDbQACuK2K-zB7QtGZwMKyuCELIBKmjNefZzOe13nHEp2Ti5i7CgFKCUsyHrjre6z-KlHzBqMNrhx8iGL2KOdnB-yNilvuqSygNZvB_druyELetimkp70JTlrdR_x6m8uyfvj-m31nG9en15WD5vccs6nvDEGqa0YZRyxrIwQUjKqbSskbVFC2wjNUNwxlKXhjQHNDCtrwzlSKqqSL8nN8e4Y_Nce46R2Llrsez2g30cFogYOUpaQouwYtcHHGLBVY3A7Hb4VUDUzU52amamZmQJQiVkq3R9LmJ44OAwqWoeDxcal3yfVePdf_QfFHnVU</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Taati, Babak</creator><creator>Greenspan, Michael</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Local shape descriptor selection for object recognition in range data</title><author>Taati, Babak ; Greenspan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>3-D registration</topic><topic>Lidar</topic><topic>Local shape descriptor</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Point matching</topic><topic>Pose acquisition</topic><topic>Range data</topic><topic>Similarity</topic><topic>Tasks</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taati, Babak</creatorcontrib><creatorcontrib>Greenspan, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taati, Babak</au><au>Greenspan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local shape descriptor selection for object recognition in range data</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>115</volume><issue>5</issue><spage>681</spage><epage>694</epage><pages>681-694</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks. Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.11.021</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2011-05, Vol.115 (5), p.681-694
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_1671319941
source Elsevier ScienceDirect Journals Complete
subjects 3-D registration
Lidar
Local shape descriptor
Mathematical models
Object recognition
Optimization
Point matching
Pose acquisition
Range data
Similarity
Tasks
Tuning
title Local shape descriptor selection for object recognition in range data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20shape%20descriptor%20selection%20for%20object%20recognition%20in%20range%20data&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Taati,%20Babak&rft.date=2011-05-01&rft.volume=115&rft.issue=5&rft.spage=681&rft.epage=694&rft.pages=681-694&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.11.021&rft_dat=%3Cproquest_cross%3E1671319941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671319941&rft_id=info:pmid/&rft_els_id=S1077314210002614&rfr_iscdi=true