Local shape descriptor selection for object recognition in range data
► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on r...
Gespeichert in:
Veröffentlicht in: | Computer vision and image understanding 2011-05, Vol.115 (5), p.681-694 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 5 |
container_start_page | 681 |
container_title | Computer vision and image understanding |
container_volume | 115 |
creator | Taati, Babak Greenspan, Michael |
description | ► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks.
Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images. |
doi_str_mv | 10.1016/j.cviu.2010.11.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671319941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210002614</els_id><sourcerecordid>1671319941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU89emnNJG1qwIss6x9Y8KLgLSTpdE3pNjXpLvjtTV3Pnmbe472B-RFyDbQACuK2K-zB7QtGZwMKyuCELIBKmjNefZzOe13nHEp2Ti5i7CgFKCUsyHrjre6z-KlHzBqMNrhx8iGL2KOdnB-yNilvuqSygNZvB_druyELetimkp70JTlrdR_x6m8uyfvj-m31nG9en15WD5vccs6nvDEGqa0YZRyxrIwQUjKqbSskbVFC2wjNUNwxlKXhjQHNDCtrwzlSKqqSL8nN8e4Y_Nce46R2Llrsez2g30cFogYOUpaQouwYtcHHGLBVY3A7Hb4VUDUzU52amamZmQJQiVkq3R9LmJ44OAwqWoeDxcal3yfVePdf_QfFHnVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671319941</pqid></control><display><type>article</type><title>Local shape descriptor selection for object recognition in range data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Taati, Babak ; Greenspan, Michael</creator><creatorcontrib>Taati, Babak ; Greenspan, Michael</creatorcontrib><description>► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks.
Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.11.021</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>3-D registration ; Lidar ; Local shape descriptor ; Mathematical models ; Object recognition ; Optimization ; Point matching ; Pose acquisition ; Range data ; Similarity ; Tasks ; Tuning</subject><ispartof>Computer vision and image understanding, 2011-05, Vol.115 (5), p.681-694</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</citedby><cites>FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cviu.2010.11.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Taati, Babak</creatorcontrib><creatorcontrib>Greenspan, Michael</creatorcontrib><title>Local shape descriptor selection for object recognition in range data</title><title>Computer vision and image understanding</title><description>► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks.
Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.</description><subject>3-D registration</subject><subject>Lidar</subject><subject>Local shape descriptor</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Point matching</subject><subject>Pose acquisition</subject><subject>Range data</subject><subject>Similarity</subject><subject>Tasks</subject><subject>Tuning</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU89emnNJG1qwIss6x9Y8KLgLSTpdE3pNjXpLvjtTV3Pnmbe472B-RFyDbQACuK2K-zB7QtGZwMKyuCELIBKmjNefZzOe13nHEp2Ti5i7CgFKCUsyHrjre6z-KlHzBqMNrhx8iGL2KOdnB-yNilvuqSygNZvB_druyELetimkp70JTlrdR_x6m8uyfvj-m31nG9en15WD5vccs6nvDEGqa0YZRyxrIwQUjKqbSskbVFC2wjNUNwxlKXhjQHNDCtrwzlSKqqSL8nN8e4Y_Nce46R2Llrsez2g30cFogYOUpaQouwYtcHHGLBVY3A7Hb4VUDUzU52amamZmQJQiVkq3R9LmJ44OAwqWoeDxcal3yfVePdf_QfFHnVU</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Taati, Babak</creator><creator>Greenspan, Michael</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Local shape descriptor selection for object recognition in range data</title><author>Taati, Babak ; Greenspan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dbbe0c52023ee45b669920acf690fe91fd6a2e682e94b3db1a2b247b33e006543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>3-D registration</topic><topic>Lidar</topic><topic>Local shape descriptor</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Point matching</topic><topic>Pose acquisition</topic><topic>Range data</topic><topic>Similarity</topic><topic>Tasks</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taati, Babak</creatorcontrib><creatorcontrib>Greenspan, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taati, Babak</au><au>Greenspan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local shape descriptor selection for object recognition in range data</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>115</volume><issue>5</issue><spage>681</spage><epage>694</epage><pages>681-694</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>► Local shape descriptor selection is expressed as an optimization problem. ► A generalized platform subsumes a large class of range data point matching methods. ► The descriptors are tuned to the geometry of specific models via feature selection. ► Object recognition experiments were performed on real LIDAR and stereo range data. ► Optimization leads to higher point matching precision in object recognition tasks.
Local shape descriptor selection for object recognition and localization in range data is formulated herein as an optimization problem. Local shape descriptors are used for establishing point correspondences between two surfaces by way of encapsulating local shape, such that their similarity indicates geometric similarity between respective neighbourhoods. We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods, and that allows for tuning to the geometry of specific models. Experimental analysis confirms the superiority of optimized descriptors over generic ones in object recognition tasks using real LIDAR and stereo range images.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.11.021</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 2011-05, Vol.115 (5), p.681-694 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671319941 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 3-D registration Lidar Local shape descriptor Mathematical models Object recognition Optimization Point matching Pose acquisition Range data Similarity Tasks Tuning |
title | Local shape descriptor selection for object recognition in range data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20shape%20descriptor%20selection%20for%20object%20recognition%20in%20range%20data&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Taati,%20Babak&rft.date=2011-05-01&rft.volume=115&rft.issue=5&rft.spage=681&rft.epage=694&rft.pages=681-694&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.11.021&rft_dat=%3Cproquest_cross%3E1671319941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671319941&rft_id=info:pmid/&rft_els_id=S1077314210002614&rfr_iscdi=true |