Local correction of juntas

A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is “close” to an isomorphism f σ of f, we can compute f σ ( x ) for any x ∈ Z 2 n with good probability using q queries to g. We observe that any k-junta, that is, any functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2012-03, Vol.112 (6), p.223-226
Hauptverfasser: Alon, Noga, Weinstein, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 6
container_start_page 223
container_title Information processing letters
container_volume 112
creator Alon, Noga
Weinstein, Amit
description A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is “close” to an isomorphism f σ of f, we can compute f σ ( x ) for any x ∈ Z 2 n with good probability using q queries to g. We observe that any k-junta, that is, any function which depends only on k of its input variables, is O ( 2 k ) -locally correctable. Moreover, we show that there are examples where this is essentially best possible, and locally correcting some k-juntas requires a number of queries which is exponential in k. These examples, however, are far from being typical, and indeed we prove that for almost every k-junta, O ( k log k ) queries suffice. ► We consider the number of queries needed to locally correct k-juntas. ► For every input x, we must recover f ( x ) with good probability using few queries to f. ► We observe that for every k-junta, O ( 2 k ) queries suffice for local correction. ► This is best possible as we show some k-juntas require exponential number of queries. ► However, for most k-juntas we provide an algorithm which performs O ( k log k ) queries.
doi_str_mv 10.1016/j.ipl.2011.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671318967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019011003279</els_id><sourcerecordid>1671318967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-986c90f2ce775b6c584bb9908623cf04bbb8cacffdf24c93d9cab97a8d9bffe03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AD0tnry0zqTbNMGTiF-w4EXPIZ0mkNJt1qQV_PdmWU8ePA0Dz_sy8zB2iVAioLjtS78bSg6IJfISoD5iC5QNLwSiOmYLAA4FoIJTdpZSDwBiXTULdrUJZIYVhRgtTT6Mq-BW_TxOJp2zE2eGZC9-55J9PD2-P7wUm7fn14f7TUFrgKlQUpACx8k2Td0KquW6bZUCKXhFDvLSSjLkXOf4mlTVKTKtaozsVOuchWrJbg69uxg-Z5smvfWJ7DCY0YY5aRQNViiVaDJ6_QftwxzHfJ1WWEuEBusM4QGiGFKK1uld9FsTvzWC3svSvc6y9F6WRq6zrJy5O2RsfvTL26gTeTuS7fzei-6C_yf9A2wccHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915810715</pqid></control><display><type>article</type><title>Local correction of juntas</title><source>Elsevier ScienceDirect Journals</source><creator>Alon, Noga ; Weinstein, Amit</creator><creatorcontrib>Alon, Noga ; Weinstein, Amit</creatorcontrib><description>A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is “close” to an isomorphism f σ of f, we can compute f σ ( x ) for any x ∈ Z 2 n with good probability using q queries to g. We observe that any k-junta, that is, any function which depends only on k of its input variables, is O ( 2 k ) -locally correctable. Moreover, we show that there are examples where this is essentially best possible, and locally correcting some k-juntas requires a number of queries which is exponential in k. These examples, however, are far from being typical, and indeed we prove that for almost every k-junta, O ( k log k ) queries suffice. ► We consider the number of queries needed to locally correct k-juntas. ► For every input x, we must recover f ( x ) with good probability using few queries to f. ► We observe that for every k-junta, O ( 2 k ) queries suffice for local correction. ► This is best possible as we show some k-juntas require exponential number of queries. ► However, for most k-juntas we provide an algorithm which performs O ( k log k ) queries.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2011.12.005</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boolean functions ; Information processing ; Information retrieval ; Isomorphism ; Local correction ; Locally correctable codes ; Mathematical analysis ; Mathematical models ; Optimization algorithms ; Queries ; Randomized algorithms ; Studies</subject><ispartof>Information processing letters, 2012-03, Vol.112 (6), p.223-226</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 15, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-986c90f2ce775b6c584bb9908623cf04bbb8cacffdf24c93d9cab97a8d9bffe03</citedby><cites>FETCH-LOGICAL-c400t-986c90f2ce775b6c584bb9908623cf04bbb8cacffdf24c93d9cab97a8d9bffe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019011003279$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Weinstein, Amit</creatorcontrib><title>Local correction of juntas</title><title>Information processing letters</title><description>A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is “close” to an isomorphism f σ of f, we can compute f σ ( x ) for any x ∈ Z 2 n with good probability using q queries to g. We observe that any k-junta, that is, any function which depends only on k of its input variables, is O ( 2 k ) -locally correctable. Moreover, we show that there are examples where this is essentially best possible, and locally correcting some k-juntas requires a number of queries which is exponential in k. These examples, however, are far from being typical, and indeed we prove that for almost every k-junta, O ( k log k ) queries suffice. ► We consider the number of queries needed to locally correct k-juntas. ► For every input x, we must recover f ( x ) with good probability using few queries to f. ► We observe that for every k-junta, O ( 2 k ) queries suffice for local correction. ► This is best possible as we show some k-juntas require exponential number of queries. ► However, for most k-juntas we provide an algorithm which performs O ( k log k ) queries.</description><subject>Boolean functions</subject><subject>Information processing</subject><subject>Information retrieval</subject><subject>Isomorphism</subject><subject>Local correction</subject><subject>Locally correctable codes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization algorithms</subject><subject>Queries</subject><subject>Randomized algorithms</subject><subject>Studies</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AD0tnry0zqTbNMGTiF-w4EXPIZ0mkNJt1qQV_PdmWU8ePA0Dz_sy8zB2iVAioLjtS78bSg6IJfISoD5iC5QNLwSiOmYLAA4FoIJTdpZSDwBiXTULdrUJZIYVhRgtTT6Mq-BW_TxOJp2zE2eGZC9-55J9PD2-P7wUm7fn14f7TUFrgKlQUpACx8k2Td0KquW6bZUCKXhFDvLSSjLkXOf4mlTVKTKtaozsVOuchWrJbg69uxg-Z5smvfWJ7DCY0YY5aRQNViiVaDJ6_QftwxzHfJ1WWEuEBusM4QGiGFKK1uld9FsTvzWC3svSvc6y9F6WRq6zrJy5O2RsfvTL26gTeTuS7fzei-6C_yf9A2wccHc</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Alon, Noga</creator><creator>Weinstein, Amit</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120315</creationdate><title>Local correction of juntas</title><author>Alon, Noga ; Weinstein, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-986c90f2ce775b6c584bb9908623cf04bbb8cacffdf24c93d9cab97a8d9bffe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boolean functions</topic><topic>Information processing</topic><topic>Information retrieval</topic><topic>Isomorphism</topic><topic>Local correction</topic><topic>Locally correctable codes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization algorithms</topic><topic>Queries</topic><topic>Randomized algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Weinstein, Amit</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alon, Noga</au><au>Weinstein, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local correction of juntas</atitle><jtitle>Information processing letters</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>112</volume><issue>6</issue><spage>223</spage><epage>226</epage><pages>223-226</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is “close” to an isomorphism f σ of f, we can compute f σ ( x ) for any x ∈ Z 2 n with good probability using q queries to g. We observe that any k-junta, that is, any function which depends only on k of its input variables, is O ( 2 k ) -locally correctable. Moreover, we show that there are examples where this is essentially best possible, and locally correcting some k-juntas requires a number of queries which is exponential in k. These examples, however, are far from being typical, and indeed we prove that for almost every k-junta, O ( k log k ) queries suffice. ► We consider the number of queries needed to locally correct k-juntas. ► For every input x, we must recover f ( x ) with good probability using few queries to f. ► We observe that for every k-junta, O ( 2 k ) queries suffice for local correction. ► This is best possible as we show some k-juntas require exponential number of queries. ► However, for most k-juntas we provide an algorithm which performs O ( k log k ) queries.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2011.12.005</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2012-03, Vol.112 (6), p.223-226
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_1671318967
source Elsevier ScienceDirect Journals
subjects Boolean functions
Information processing
Information retrieval
Isomorphism
Local correction
Locally correctable codes
Mathematical analysis
Mathematical models
Optimization algorithms
Queries
Randomized algorithms
Studies
title Local correction of juntas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20correction%20of%20juntas&rft.jtitle=Information%20processing%20letters&rft.au=Alon,%20Noga&rft.date=2012-03-15&rft.volume=112&rft.issue=6&rft.spage=223&rft.epage=226&rft.pages=223-226&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2011.12.005&rft_dat=%3Cproquest_cross%3E1671318967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915810715&rft_id=info:pmid/&rft_els_id=S0020019011003279&rfr_iscdi=true