Covering dimension and finite spaces

Finite topological spaces, that is spaces with a finite number of points, have a wide range of applications in many areas such as computer graphics and image analysis. In this paper we study the covering dimension of a finite topological space. In particular, we give an algorithm for computing the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-12, Vol.218 (7), p.3122-3130
Hauptverfasser: Georgiou, D.N., Megaritis, A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3130
container_issue 7
container_start_page 3122
container_title Applied mathematics and computation
container_volume 218
creator Georgiou, D.N.
Megaritis, A.C.
description Finite topological spaces, that is spaces with a finite number of points, have a wide range of applications in many areas such as computer graphics and image analysis. In this paper we study the covering dimension of a finite topological space. In particular, we give an algorithm for computing the covering dimension of a finite topological space using matrix algebra.
doi_str_mv 10.1016/j.amc.2011.08.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671314309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671314309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-237890520dd2f12afa2bbaeb0441ed6cbdfe06b187d9327c0044b36f892fc4b33</originalsourceid><addsrcrecordid>eNotkLtOxDAURF2AxLLwAXQpKGgS7rWD7ZQo4iWtRAO15SdylDiLnUXi78lqqWakOZriEHKD0CAgvx8aPdmGAmIDsoEWzsgGoOM1A2AX5LKUAQAEx3ZDbvv5x-eYvioXJ59KnFOlk6tCTHHxVdlr68sVOQ96LP76P7fk8_npo3-td-8vb_3jrrZUyKWmTMgOHig4RwNSHTQ1RnsDbYvecWtc8MANSuE6RoWFdTCMB9nRYNfGtuTu9LvP8_fBl0VNsVg_jjr5-VAUcoEMWwbdiuIJtXkuJfug9jlOOv8qBHW0oAa1WlBHCwqkWi2wPxYIUcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671314309</pqid></control><display><type>article</type><title>Covering dimension and finite spaces</title><source>Elsevier ScienceDirect Journals</source><creator>Georgiou, D.N. ; Megaritis, A.C.</creator><creatorcontrib>Georgiou, D.N. ; Megaritis, A.C.</creatorcontrib><description>Finite topological spaces, that is spaces with a finite number of points, have a wide range of applications in many areas such as computer graphics and image analysis. In this paper we study the covering dimension of a finite topological space. In particular, we give an algorithm for computing the covering dimension of a finite topological space using matrix algebra.</description><identifier>ISSN: 0096-3003</identifier><identifier>DOI: 10.1016/j.amc.2011.08.040</identifier><language>eng</language><subject>Algorithms ; Computation ; Covering ; Image analysis ; Mathematical analysis ; Mathematical models ; Matrix algebra ; Topology</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (7), p.3122-3130</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-237890520dd2f12afa2bbaeb0441ed6cbdfe06b187d9327c0044b36f892fc4b33</citedby><cites>FETCH-LOGICAL-c278t-237890520dd2f12afa2bbaeb0441ed6cbdfe06b187d9327c0044b36f892fc4b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Georgiou, D.N.</creatorcontrib><creatorcontrib>Megaritis, A.C.</creatorcontrib><title>Covering dimension and finite spaces</title><title>Applied mathematics and computation</title><description>Finite topological spaces, that is spaces with a finite number of points, have a wide range of applications in many areas such as computer graphics and image analysis. In this paper we study the covering dimension of a finite topological space. In particular, we give an algorithm for computing the covering dimension of a finite topological space using matrix algebra.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Covering</subject><subject>Image analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix algebra</subject><subject>Topology</subject><issn>0096-3003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkLtOxDAURF2AxLLwAXQpKGgS7rWD7ZQo4iWtRAO15SdylDiLnUXi78lqqWakOZriEHKD0CAgvx8aPdmGAmIDsoEWzsgGoOM1A2AX5LKUAQAEx3ZDbvv5x-eYvioXJ59KnFOlk6tCTHHxVdlr68sVOQ96LP76P7fk8_npo3-td-8vb_3jrrZUyKWmTMgOHig4RwNSHTQ1RnsDbYvecWtc8MANSuE6RoWFdTCMB9nRYNfGtuTu9LvP8_fBl0VNsVg_jjr5-VAUcoEMWwbdiuIJtXkuJfug9jlOOv8qBHW0oAa1WlBHCwqkWi2wPxYIUcQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Georgiou, D.N.</creator><creator>Megaritis, A.C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201112</creationdate><title>Covering dimension and finite spaces</title><author>Georgiou, D.N. ; Megaritis, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-237890520dd2f12afa2bbaeb0441ed6cbdfe06b187d9327c0044b36f892fc4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Covering</topic><topic>Image analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix algebra</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiou, D.N.</creatorcontrib><creatorcontrib>Megaritis, A.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiou, D.N.</au><au>Megaritis, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covering dimension and finite spaces</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12</date><risdate>2011</risdate><volume>218</volume><issue>7</issue><spage>3122</spage><epage>3130</epage><pages>3122-3130</pages><issn>0096-3003</issn><abstract>Finite topological spaces, that is spaces with a finite number of points, have a wide range of applications in many areas such as computer graphics and image analysis. In this paper we study the covering dimension of a finite topological space. In particular, we give an algorithm for computing the covering dimension of a finite topological space using matrix algebra.</abstract><doi>10.1016/j.amc.2011.08.040</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-12, Vol.218 (7), p.3122-3130
issn 0096-3003
language eng
recordid cdi_proquest_miscellaneous_1671314309
source Elsevier ScienceDirect Journals
subjects Algorithms
Computation
Covering
Image analysis
Mathematical analysis
Mathematical models
Matrix algebra
Topology
title Covering dimension and finite spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covering%20dimension%20and%20finite%20spaces&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Georgiou,%20D.N.&rft.date=2011-12&rft.volume=218&rft.issue=7&rft.spage=3122&rft.epage=3130&rft.pages=3122-3130&rft.issn=0096-3003&rft_id=info:doi/10.1016/j.amc.2011.08.040&rft_dat=%3Cproquest_cross%3E1671314309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671314309&rft_id=info:pmid/&rfr_iscdi=true