Minimal length uncertainty and generalized non-commutative geometry

A generalized formulation of non-commutative geometry for the Bargmann–Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2009-12, Vol.42 (5), p.2833-2835
Hauptverfasser: Farmany, A., Abbasi, S., Darvishi, M.T., Khani, F., Naghipour, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2835
container_issue 5
container_start_page 2833
container_title Chaos, solitons and fractals
container_volume 42
creator Farmany, A.
Abbasi, S.
Darvishi, M.T.
Khani, F.
Naghipour, A.
description A generalized formulation of non-commutative geometry for the Bargmann–Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.
doi_str_mv 10.1016/j.chaos.2009.04.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671312634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077909003610</els_id><sourcerecordid>1671312634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c7828790ef32444258dd95ed05dd7578ce5e82a660ddc2755ad577531c72f3473</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEuXxC1gysiRc27GdDAyo4iUVscBsWfZt6ypxiu1UKr-elDIz3eGe70jnI-SGQkWByrtNZddmSBUDaCuoK2DihMxoo3jJmkadkhm0EkpQqj0nFyltAICCZDMyf_PB96YrOgyrvC7GYDFm40PeFya4YoUBo-n8N7oiDKG0Q9-P2WS_w-k39Jjj_oqcLU2X8PrvXpLPp8eP-Uu5eH9-nT8sSsu5zKVVDWtUC7jkrK5rJhrnWoEOhHNKqMaiwIYZKcE5y5QQxgmlBKdWsSWvFb8kt8febRy-RkxZ9z5Z7DoTcBiTplJRTpnk9RTlx6iNQ0oRl3obp5lxrynogzK90b_K9EGZhlpPyibq_kjhtGLnMepkPU5GnI9os3aD_5f_AXSndcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671312634</pqid></control><display><type>article</type><title>Minimal length uncertainty and generalized non-commutative geometry</title><source>Elsevier ScienceDirect Journals</source><creator>Farmany, A. ; Abbasi, S. ; Darvishi, M.T. ; Khani, F. ; Naghipour, A.</creator><creatorcontrib>Farmany, A. ; Abbasi, S. ; Darvishi, M.T. ; Khani, F. ; Naghipour, A.</creatorcontrib><description>A generalized formulation of non-commutative geometry for the Bargmann–Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2009.04.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chaos theory ; Field theory ; Formulations ; Fractal analysis ; Fractals ; Solitons ; Symmetry ; Uncertainty</subject><ispartof>Chaos, solitons and fractals, 2009-12, Vol.42 (5), p.2833-2835</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c7828790ef32444258dd95ed05dd7578ce5e82a660ddc2755ad577531c72f3473</citedby><cites>FETCH-LOGICAL-c336t-c7828790ef32444258dd95ed05dd7578ce5e82a660ddc2755ad577531c72f3473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chaos.2009.04.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Farmany, A.</creatorcontrib><creatorcontrib>Abbasi, S.</creatorcontrib><creatorcontrib>Darvishi, M.T.</creatorcontrib><creatorcontrib>Khani, F.</creatorcontrib><creatorcontrib>Naghipour, A.</creatorcontrib><title>Minimal length uncertainty and generalized non-commutative geometry</title><title>Chaos, solitons and fractals</title><description>A generalized formulation of non-commutative geometry for the Bargmann–Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.</description><subject>Chaos theory</subject><subject>Field theory</subject><subject>Formulations</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Solitons</subject><subject>Symmetry</subject><subject>Uncertainty</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEuXxC1gysiRc27GdDAyo4iUVscBsWfZt6ypxiu1UKr-elDIz3eGe70jnI-SGQkWByrtNZddmSBUDaCuoK2DihMxoo3jJmkadkhm0EkpQqj0nFyltAICCZDMyf_PB96YrOgyrvC7GYDFm40PeFya4YoUBo-n8N7oiDKG0Q9-P2WS_w-k39Jjj_oqcLU2X8PrvXpLPp8eP-Uu5eH9-nT8sSsu5zKVVDWtUC7jkrK5rJhrnWoEOhHNKqMaiwIYZKcE5y5QQxgmlBKdWsSWvFb8kt8febRy-RkxZ9z5Z7DoTcBiTplJRTpnk9RTlx6iNQ0oRl3obp5lxrynogzK90b_K9EGZhlpPyibq_kjhtGLnMepkPU5GnI9os3aD_5f_AXSndcg</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Farmany, A.</creator><creator>Abbasi, S.</creator><creator>Darvishi, M.T.</creator><creator>Khani, F.</creator><creator>Naghipour, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20091215</creationdate><title>Minimal length uncertainty and generalized non-commutative geometry</title><author>Farmany, A. ; Abbasi, S. ; Darvishi, M.T. ; Khani, F. ; Naghipour, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c7828790ef32444258dd95ed05dd7578ce5e82a660ddc2755ad577531c72f3473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chaos theory</topic><topic>Field theory</topic><topic>Formulations</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Solitons</topic><topic>Symmetry</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farmany, A.</creatorcontrib><creatorcontrib>Abbasi, S.</creatorcontrib><creatorcontrib>Darvishi, M.T.</creatorcontrib><creatorcontrib>Khani, F.</creatorcontrib><creatorcontrib>Naghipour, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farmany, A.</au><au>Abbasi, S.</au><au>Darvishi, M.T.</au><au>Khani, F.</au><au>Naghipour, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal length uncertainty and generalized non-commutative geometry</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2009-12-15</date><risdate>2009</risdate><volume>42</volume><issue>5</issue><spage>2833</spage><epage>2835</epage><pages>2833-2835</pages><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>A generalized formulation of non-commutative geometry for the Bargmann–Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2009.04.025</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2009-12, Vol.42 (5), p.2833-2835
issn 0960-0779
1873-2887
language eng
recordid cdi_proquest_miscellaneous_1671312634
source Elsevier ScienceDirect Journals
subjects Chaos theory
Field theory
Formulations
Fractal analysis
Fractals
Solitons
Symmetry
Uncertainty
title Minimal length uncertainty and generalized non-commutative geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20length%20uncertainty%20and%20generalized%20non-commutative%20geometry&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Farmany,%20A.&rft.date=2009-12-15&rft.volume=42&rft.issue=5&rft.spage=2833&rft.epage=2835&rft.pages=2833-2835&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2009.04.025&rft_dat=%3Cproquest_cross%3E1671312634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671312634&rft_id=info:pmid/&rft_els_id=S0960077909003610&rfr_iscdi=true