Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion

A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2011-09, Vol.129 (1), p.33-68
Hauptverfasser: Kim, Sunyoung, Kojima, Masakazu, Mevissen, Martin, Yamashita, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 33
container_title Mathematical programming
container_volume 129
creator Kim, Sunyoung
Kojima, Masakazu
Mevissen, Martin
Yamashita, Makoto
description A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the domain-space sparsity (d-space sparsity) for the symmetric matrix variable in the objective and/or constraint functions of the problem, which is required to be positive semidefinite, and the range-space sparsity (r-space sparsity) for a linear or nonlinear matrix-inequality constraint of the problem. Four conversion methods are proposed in this framework: two for exploiting the d-space sparsity and the other two for exploiting the r-space sparsity. When applied to a polynomial semidefinite program (SDP), these conversion methods enhance the structured sparsity of the problem called the correlative sparsity. As a result, the resulting polynomial SDP can be solved more effectively by applying the sparse SDP relaxation. Preliminary numerical results on the conversion methods indicate their potential for improving the efficiency of solving various problems.
doi_str_mv 10.1007/s10107-010-0402-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671307093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422194441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-1141d628d4518b356ef9127249355be81f2485b1ff0f62ce76357c31c41a66633</originalsourceid><addsrcrecordid>eNp1kMtKBDEQRYMoOD4-wF3jyk1rVV6dWYr4AsGNrkOmp1qi3Umb9Mj492YYRRDcVFHknEu4jJ0gnCNAc5EREJq6jBok8FrvsBlKoWuppd5lMwCuaqUR9tlBzq8AgMKYGXu7Xo999JMPL1UeXcp--qx8qHofyKXKhWUVYvi-Bjclvy7P9L5yfZEoVx_eVWMsmv-gKtPgl9T54Cf6ods4jD1NPoYjtte5PtPx9z5kzzfXT1d39cPj7f3V5UPdSmWmGlHiUnOzlArNQihN3Rx5w-VcKLUggx2XRi2w66DTvKVGC9W0AluJTmstxCE72-aOKb6vKE928LmlvneB4ipb1A0KaGC-QU__oK9xlUL5nTWGa1XiZIFwC7Up5pyos2Pyg0ufFsFu2rfb9m0ZdtO-1cXhWycXNrxQ-g3-X_oCGuOH9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>882656634</pqid></control><display><type>article</type><title>Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Sunyoung ; Kojima, Masakazu ; Mevissen, Martin ; Yamashita, Makoto</creator><creatorcontrib>Kim, Sunyoung ; Kojima, Masakazu ; Mevissen, Martin ; Yamashita, Makoto</creatorcontrib><description>A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the domain-space sparsity (d-space sparsity) for the symmetric matrix variable in the objective and/or constraint functions of the problem, which is required to be positive semidefinite, and the range-space sparsity (r-space sparsity) for a linear or nonlinear matrix-inequality constraint of the problem. Four conversion methods are proposed in this framework: two for exploiting the d-space sparsity and the other two for exploiting the r-space sparsity. When applied to a polynomial semidefinite program (SDP), these conversion methods enhance the structured sparsity of the problem called the correlative sparsity. As a result, the resulting polynomial SDP can be solved more effectively by applying the sparse SDP relaxation. Preliminary numerical results on the conversion methods indicate their potential for improving the efficiency of solving various problems.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-010-0402-6</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Classification ; Combinatorics ; Conversion ; Correlation ; Euclidean space ; Full Length Paper ; Graphs ; Inequalities ; Inequality ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Methods ; Nonlinearity ; Numerical Analysis ; Optimization ; Sparsity ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2011-09, Vol.129 (1), p.33-68</ispartof><rights>Springer and Mathematical Optimization Society 2010</rights><rights>Springer and Mathematical Optimization Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-1141d628d4518b356ef9127249355be81f2485b1ff0f62ce76357c31c41a66633</citedby><cites>FETCH-LOGICAL-c458t-1141d628d4518b356ef9127249355be81f2485b1ff0f62ce76357c31c41a66633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-010-0402-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-010-0402-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kim, Sunyoung</creatorcontrib><creatorcontrib>Kojima, Masakazu</creatorcontrib><creatorcontrib>Mevissen, Martin</creatorcontrib><creatorcontrib>Yamashita, Makoto</creatorcontrib><title>Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the domain-space sparsity (d-space sparsity) for the symmetric matrix variable in the objective and/or constraint functions of the problem, which is required to be positive semidefinite, and the range-space sparsity (r-space sparsity) for a linear or nonlinear matrix-inequality constraint of the problem. Four conversion methods are proposed in this framework: two for exploiting the d-space sparsity and the other two for exploiting the r-space sparsity. When applied to a polynomial semidefinite program (SDP), these conversion methods enhance the structured sparsity of the problem called the correlative sparsity. As a result, the resulting polynomial SDP can be solved more effectively by applying the sparse SDP relaxation. Preliminary numerical results on the conversion methods indicate their potential for improving the efficiency of solving various problems.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classification</subject><subject>Combinatorics</subject><subject>Conversion</subject><subject>Correlation</subject><subject>Euclidean space</subject><subject>Full Length Paper</subject><subject>Graphs</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Methods</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Sparsity</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKBDEQRYMoOD4-wF3jyk1rVV6dWYr4AsGNrkOmp1qi3Umb9Mj492YYRRDcVFHknEu4jJ0gnCNAc5EREJq6jBok8FrvsBlKoWuppd5lMwCuaqUR9tlBzq8AgMKYGXu7Xo999JMPL1UeXcp--qx8qHofyKXKhWUVYvi-Bjclvy7P9L5yfZEoVx_eVWMsmv-gKtPgl9T54Cf6ods4jD1NPoYjtte5PtPx9z5kzzfXT1d39cPj7f3V5UPdSmWmGlHiUnOzlArNQihN3Rx5w-VcKLUggx2XRi2w66DTvKVGC9W0AluJTmstxCE72-aOKb6vKE928LmlvneB4ipb1A0KaGC-QU__oK9xlUL5nTWGa1XiZIFwC7Up5pyos2Pyg0ufFsFu2rfb9m0ZdtO-1cXhWycXNrxQ-g3-X_oCGuOH9Q</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Kim, Sunyoung</creator><creator>Kojima, Masakazu</creator><creator>Mevissen, Martin</creator><creator>Yamashita, Makoto</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110901</creationdate><title>Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion</title><author>Kim, Sunyoung ; Kojima, Masakazu ; Mevissen, Martin ; Yamashita, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-1141d628d4518b356ef9127249355be81f2485b1ff0f62ce76357c31c41a66633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classification</topic><topic>Combinatorics</topic><topic>Conversion</topic><topic>Correlation</topic><topic>Euclidean space</topic><topic>Full Length Paper</topic><topic>Graphs</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Methods</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Sparsity</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sunyoung</creatorcontrib><creatorcontrib>Kojima, Masakazu</creatorcontrib><creatorcontrib>Mevissen, Martin</creatorcontrib><creatorcontrib>Yamashita, Makoto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sunyoung</au><au>Kojima, Masakazu</au><au>Mevissen, Martin</au><au>Yamashita, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>129</volume><issue>1</issue><spage>33</spage><epage>68</epage><pages>33-68</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the domain-space sparsity (d-space sparsity) for the symmetric matrix variable in the objective and/or constraint functions of the problem, which is required to be positive semidefinite, and the range-space sparsity (r-space sparsity) for a linear or nonlinear matrix-inequality constraint of the problem. Four conversion methods are proposed in this framework: two for exploiting the d-space sparsity and the other two for exploiting the r-space sparsity. When applied to a polynomial semidefinite program (SDP), these conversion methods enhance the structured sparsity of the problem called the correlative sparsity. As a result, the resulting polynomial SDP can be solved more effectively by applying the sparse SDP relaxation. Preliminary numerical results on the conversion methods indicate their potential for improving the efficiency of solving various problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10107-010-0402-6</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2011-09, Vol.129 (1), p.33-68
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_1671307093
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Classification
Combinatorics
Conversion
Correlation
Euclidean space
Full Length Paper
Graphs
Inequalities
Inequality
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Nonlinearity
Numerical Analysis
Optimization
Sparsity
Studies
Theoretical
title Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20sparsity%20in%20linear%20and%20nonlinear%20matrix%20inequalities%20via%20positive%20semidefinite%20matrix%20completion&rft.jtitle=Mathematical%20programming&rft.au=Kim,%20Sunyoung&rft.date=2011-09-01&rft.volume=129&rft.issue=1&rft.spage=33&rft.epage=68&rft.pages=33-68&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-010-0402-6&rft_dat=%3Cproquest_cross%3E2422194441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=882656634&rft_id=info:pmid/&rfr_iscdi=true