Forced flow boiling of carbon dioxide in horizontal mini-channel
This paper covers a wide spectrum of thermal flow behavior, including flow patterns, heat transfer, pressure drop, critical heat flux of flow boiling carbon dioxide at high pressure in horizontal mini-channels. The presented experimental data covers relatively wide ranges: tube diameters from 0.51 m...
Gespeichert in:
Veröffentlicht in: | International journal of thermal sciences 2011-03, Vol.50 (3), p.296-308 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 3 |
container_start_page | 296 |
container_title | International journal of thermal sciences |
container_volume | 50 |
creator | Ozawa, Mamoru Ami, Takeyuki Umekawa, Hisashi Matsumoto, Ryosuke Hara, Takashi |
description | This paper covers a wide spectrum of thermal flow behavior, including flow patterns, heat transfer, pressure drop, critical heat flux of flow boiling carbon dioxide at high pressure in horizontal mini-channels. The presented experimental data covers relatively wide ranges: tube diameters from 0.51 mm to 3.0 mm, mass flux from 80 kg/m
2s to 900 kg/m
2s, heat flux from 5 kW/m
2 to 40 kW/m
2, pressure/saturation temperature from 4.0 MPa/5.30 °C to 7.0 MPa/28.7 °C. The carbon dioxide at high pressure has small density difference between vapor and liquid and low surface tension, and shows a slightly different structure of the flow pattern from so far observed conventional two-phase flow with air and water and/or larger diameter tubes. So far proposed transition criteria of flow pattern are as a whole ineffective in the present range of experiment, and the discrete bubble model developed by the authors demonstrates its high potential in predicting flow patterns. The phase mal-distribution in the cross-section becomes rather significant beyond a critical Bond number, while less significant or almost axi-symmetric below the critical Bond number. This significant phase mal-distribution leads to the intermittent dryout at the upper wall of the tube, while below the dryout heat flux the boiling heat transfer is dominated by the nucleate boiling mode, being well predicted with conventional correlations. |
doi_str_mv | 10.1016/j.ijthermalsci.2010.04.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671303859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S129007291000116X</els_id><sourcerecordid>1671303859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-23265779154f2f458aa127d2f16b77bf6379d0e4c0db380eccb87c80fde7d59e3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhhdRsFb_wyIIXrZOkt3NridFrQoFL3oO2WRiU7ZJTbZ-_XpTWsSjpwnMk_dlniw7JTAhQOqLxcQuhjmGpeyjshMKaQHlBAjfy0aE86YoSV3vpzdtoQBO28PsKMYFAPAW2lF2NfVBoc5N7z_yztveutfcm1zJ0HmXa-s_rcbcunzug_32bpB9vrTOFmouncP-ODswqRxPdnOcvUzvnm8eitnT_ePN9axQrOFDQRmtK85bUpWGmrJqpCSUa2pI3XHemZrxVgOWCnTHGkCluoarBoxGrqsW2Tg73-augn9bYxzE0kaFfS8d-nUUpOaEAWuqNqGXW1QFH2NAI1bBLmX4EgTERptYiL_axEabgFIkbenz2a5HRiV7E6RTNv4mUNawkpQ0cbdbDtPR7xaDSEnokksbUA1Ce_ufuh8ZFony</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671303859</pqid></control><display><type>article</type><title>Forced flow boiling of carbon dioxide in horizontal mini-channel</title><source>Elsevier ScienceDirect Journals</source><creator>Ozawa, Mamoru ; Ami, Takeyuki ; Umekawa, Hisashi ; Matsumoto, Ryosuke ; Hara, Takashi</creator><creatorcontrib>Ozawa, Mamoru ; Ami, Takeyuki ; Umekawa, Hisashi ; Matsumoto, Ryosuke ; Hara, Takashi</creatorcontrib><description>This paper covers a wide spectrum of thermal flow behavior, including flow patterns, heat transfer, pressure drop, critical heat flux of flow boiling carbon dioxide at high pressure in horizontal mini-channels. The presented experimental data covers relatively wide ranges: tube diameters from 0.51 mm to 3.0 mm, mass flux from 80 kg/m
2s to 900 kg/m
2s, heat flux from 5 kW/m
2 to 40 kW/m
2, pressure/saturation temperature from 4.0 MPa/5.30 °C to 7.0 MPa/28.7 °C. The carbon dioxide at high pressure has small density difference between vapor and liquid and low surface tension, and shows a slightly different structure of the flow pattern from so far observed conventional two-phase flow with air and water and/or larger diameter tubes. So far proposed transition criteria of flow pattern are as a whole ineffective in the present range of experiment, and the discrete bubble model developed by the authors demonstrates its high potential in predicting flow patterns. The phase mal-distribution in the cross-section becomes rather significant beyond a critical Bond number, while less significant or almost axi-symmetric below the critical Bond number. This significant phase mal-distribution leads to the intermittent dryout at the upper wall of the tube, while below the dryout heat flux the boiling heat transfer is dominated by the nucleate boiling mode, being well predicted with conventional correlations.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2010.04.017</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Applied sciences ; Boiling ; Boiling heat transfer ; Bond number ; Carbon dioxide ; Carbone dioxide ; Critical heat flux ; Density ; Discrete bubble model ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow pattern ; Heat flux ; Heat transfer ; Horizontal ; Mathematical models ; Phase stratification ; Pressure drop ; Properties and use of thermal fluids ; Theoretical studies. Data and constants. Metering ; Tubes</subject><ispartof>International journal of thermal sciences, 2011-03, Vol.50 (3), p.296-308</ispartof><rights>2010 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-23265779154f2f458aa127d2f16b77bf6379d0e4c0db380eccb87c80fde7d59e3</citedby><cites>FETCH-LOGICAL-c387t-23265779154f2f458aa127d2f16b77bf6379d0e4c0db380eccb87c80fde7d59e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S129007291000116X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23834142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozawa, Mamoru</creatorcontrib><creatorcontrib>Ami, Takeyuki</creatorcontrib><creatorcontrib>Umekawa, Hisashi</creatorcontrib><creatorcontrib>Matsumoto, Ryosuke</creatorcontrib><creatorcontrib>Hara, Takashi</creatorcontrib><title>Forced flow boiling of carbon dioxide in horizontal mini-channel</title><title>International journal of thermal sciences</title><description>This paper covers a wide spectrum of thermal flow behavior, including flow patterns, heat transfer, pressure drop, critical heat flux of flow boiling carbon dioxide at high pressure in horizontal mini-channels. The presented experimental data covers relatively wide ranges: tube diameters from 0.51 mm to 3.0 mm, mass flux from 80 kg/m
2s to 900 kg/m
2s, heat flux from 5 kW/m
2 to 40 kW/m
2, pressure/saturation temperature from 4.0 MPa/5.30 °C to 7.0 MPa/28.7 °C. The carbon dioxide at high pressure has small density difference between vapor and liquid and low surface tension, and shows a slightly different structure of the flow pattern from so far observed conventional two-phase flow with air and water and/or larger diameter tubes. So far proposed transition criteria of flow pattern are as a whole ineffective in the present range of experiment, and the discrete bubble model developed by the authors demonstrates its high potential in predicting flow patterns. The phase mal-distribution in the cross-section becomes rather significant beyond a critical Bond number, while less significant or almost axi-symmetric below the critical Bond number. This significant phase mal-distribution leads to the intermittent dryout at the upper wall of the tube, while below the dryout heat flux the boiling heat transfer is dominated by the nucleate boiling mode, being well predicted with conventional correlations.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Boiling heat transfer</subject><subject>Bond number</subject><subject>Carbon dioxide</subject><subject>Carbone dioxide</subject><subject>Critical heat flux</subject><subject>Density</subject><subject>Discrete bubble model</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow pattern</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Horizontal</subject><subject>Mathematical models</subject><subject>Phase stratification</subject><subject>Pressure drop</subject><subject>Properties and use of thermal fluids</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Tubes</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhhdRsFb_wyIIXrZOkt3NridFrQoFL3oO2WRiU7ZJTbZ-_XpTWsSjpwnMk_dlniw7JTAhQOqLxcQuhjmGpeyjshMKaQHlBAjfy0aE86YoSV3vpzdtoQBO28PsKMYFAPAW2lF2NfVBoc5N7z_yztveutfcm1zJ0HmXa-s_rcbcunzug_32bpB9vrTOFmouncP-ODswqRxPdnOcvUzvnm8eitnT_ePN9axQrOFDQRmtK85bUpWGmrJqpCSUa2pI3XHemZrxVgOWCnTHGkCluoarBoxGrqsW2Tg73-augn9bYxzE0kaFfS8d-nUUpOaEAWuqNqGXW1QFH2NAI1bBLmX4EgTERptYiL_axEabgFIkbenz2a5HRiV7E6RTNv4mUNawkpQ0cbdbDtPR7xaDSEnokksbUA1Ce_ufuh8ZFony</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ozawa, Mamoru</creator><creator>Ami, Takeyuki</creator><creator>Umekawa, Hisashi</creator><creator>Matsumoto, Ryosuke</creator><creator>Hara, Takashi</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Forced flow boiling of carbon dioxide in horizontal mini-channel</title><author>Ozawa, Mamoru ; Ami, Takeyuki ; Umekawa, Hisashi ; Matsumoto, Ryosuke ; Hara, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-23265779154f2f458aa127d2f16b77bf6379d0e4c0db380eccb87c80fde7d59e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Boiling heat transfer</topic><topic>Bond number</topic><topic>Carbon dioxide</topic><topic>Carbone dioxide</topic><topic>Critical heat flux</topic><topic>Density</topic><topic>Discrete bubble model</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow pattern</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Horizontal</topic><topic>Mathematical models</topic><topic>Phase stratification</topic><topic>Pressure drop</topic><topic>Properties and use of thermal fluids</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozawa, Mamoru</creatorcontrib><creatorcontrib>Ami, Takeyuki</creatorcontrib><creatorcontrib>Umekawa, Hisashi</creatorcontrib><creatorcontrib>Matsumoto, Ryosuke</creatorcontrib><creatorcontrib>Hara, Takashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozawa, Mamoru</au><au>Ami, Takeyuki</au><au>Umekawa, Hisashi</au><au>Matsumoto, Ryosuke</au><au>Hara, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced flow boiling of carbon dioxide in horizontal mini-channel</atitle><jtitle>International journal of thermal sciences</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>50</volume><issue>3</issue><spage>296</spage><epage>308</epage><pages>296-308</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>This paper covers a wide spectrum of thermal flow behavior, including flow patterns, heat transfer, pressure drop, critical heat flux of flow boiling carbon dioxide at high pressure in horizontal mini-channels. The presented experimental data covers relatively wide ranges: tube diameters from 0.51 mm to 3.0 mm, mass flux from 80 kg/m
2s to 900 kg/m
2s, heat flux from 5 kW/m
2 to 40 kW/m
2, pressure/saturation temperature from 4.0 MPa/5.30 °C to 7.0 MPa/28.7 °C. The carbon dioxide at high pressure has small density difference between vapor and liquid and low surface tension, and shows a slightly different structure of the flow pattern from so far observed conventional two-phase flow with air and water and/or larger diameter tubes. So far proposed transition criteria of flow pattern are as a whole ineffective in the present range of experiment, and the discrete bubble model developed by the authors demonstrates its high potential in predicting flow patterns. The phase mal-distribution in the cross-section becomes rather significant beyond a critical Bond number, while less significant or almost axi-symmetric below the critical Bond number. This significant phase mal-distribution leads to the intermittent dryout at the upper wall of the tube, while below the dryout heat flux the boiling heat transfer is dominated by the nucleate boiling mode, being well predicted with conventional correlations.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2010.04.017</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2011-03, Vol.50 (3), p.296-308 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671303859 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boiling Boiling heat transfer Bond number Carbon dioxide Carbone dioxide Critical heat flux Density Discrete bubble model Energy Energy. Thermal use of fuels Exact sciences and technology Flow pattern Heat flux Heat transfer Horizontal Mathematical models Phase stratification Pressure drop Properties and use of thermal fluids Theoretical studies. Data and constants. Metering Tubes |
title | Forced flow boiling of carbon dioxide in horizontal mini-channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20flow%20boiling%20of%20carbon%20dioxide%20in%20horizontal%20mini-channel&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Ozawa,%20Mamoru&rft.date=2011-03-01&rft.volume=50&rft.issue=3&rft.spage=296&rft.epage=308&rft.pages=296-308&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2010.04.017&rft_dat=%3Cproquest_cross%3E1671303859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671303859&rft_id=info:pmid/&rft_els_id=S129007291000116X&rfr_iscdi=true |