Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers
In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each on...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2013-01, Vol.23 (1), p.475-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 1 |
container_start_page | 475 |
container_title | SIAM journal on optimization |
container_volume | 23 |
creator | Monteiro, Renato D. C. Svaiter, Benar F. |
description | In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an approximate sense. Moreover, by showing that any method in this framework is also a special instance of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive corresponding convergence rate results. We also describe some instances of the framework based on specific and inexpensive schemes for solving the single-block proximal subproblems. Finally, we consider some applications of our methodology to establish for the first time (i) the iteration-complexity of an algorithm for finding a zero of the sum of two arbitrary maximal monotone operators and, as a consequence, the ergodic iteration-complexity of the Douglas--Rachford splitting method and (ii) the ergodic iteration-complexity of the classical alternating direction method of multipliers for a class of linearly constrained convex programming problems with proper closed convex objective functions. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/110849468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671303524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917745661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-8e3aaa69c11ba38cd530478114010330e410a8ab7541210b63e3c90d856bcacc3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEEuWx4A8isYFFYCZOHHtZWh6VWrGBdeQ4buvixMF2JPr3JBSxYDWjqzNHmhtFVwh3iKS4RwSW8Yyyo2iCwPOkQMaPxz1PE5qS7DQ6834HAIxTNol2i6CcCNq2ycw2nVFfOuxju44fjJUfyVzJIbVej0Q8NRvrdNg2PhZtHYetGqLhvh0E7Saea6fkD7hSYWvrUbPqTdCd0cr5i-hkLYxXl7_zPHp_enybvSTL1-fFbLpMZMohJEwRIQTlErEShMk6J5AVDDEDBEJAZQiCiarIM0wRKkoUkRxqltNKCinJeXRz8HbOfvbKh7LRXipjRKts70ukBRIgeZoN6PU_dGf74R0zUAQpJ8iADtTtgZLOeu_UuuycboTblwjl2Hr51zr5Bl-4c9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316931806</pqid></control><display><type>article</type><title>Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers</title><source>SIAM Journals Online</source><creator>Monteiro, Renato D. C. ; Svaiter, Benar F.</creator><creatorcontrib>Monteiro, Renato D. C. ; Svaiter, Benar F.</creatorcontrib><description>In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an approximate sense. Moreover, by showing that any method in this framework is also a special instance of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive corresponding convergence rate results. We also describe some instances of the framework based on specific and inexpensive schemes for solving the single-block proximal subproblems. Finally, we consider some applications of our methodology to establish for the first time (i) the iteration-complexity of an algorithm for finding a zero of the sum of two arbitrary maximal monotone operators and, as a consequence, the ergodic iteration-complexity of the Douglas--Rachford splitting method and (ii) the ergodic iteration-complexity of the classical alternating direction method of multipliers for a class of linearly constrained convex programming problems with proper closed convex objective functions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/110849468</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Blocking ; Convergence ; Decomposition ; Ergodic processes ; Methods ; Multipliers ; Operators ; Programming</subject><ispartof>SIAM journal on optimization, 2013-01, Vol.23 (1), p.475-507</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-8e3aaa69c11ba38cd530478114010330e410a8ab7541210b63e3c90d856bcacc3</citedby><cites>FETCH-LOGICAL-c290t-8e3aaa69c11ba38cd530478114010330e410a8ab7541210b63e3c90d856bcacc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3188,27933,27934</link.rule.ids></links><search><creatorcontrib>Monteiro, Renato D. C.</creatorcontrib><creatorcontrib>Svaiter, Benar F.</creatorcontrib><title>Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers</title><title>SIAM journal on optimization</title><description>In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an approximate sense. Moreover, by showing that any method in this framework is also a special instance of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive corresponding convergence rate results. We also describe some instances of the framework based on specific and inexpensive schemes for solving the single-block proximal subproblems. Finally, we consider some applications of our methodology to establish for the first time (i) the iteration-complexity of an algorithm for finding a zero of the sum of two arbitrary maximal monotone operators and, as a consequence, the ergodic iteration-complexity of the Douglas--Rachford splitting method and (ii) the ergodic iteration-complexity of the classical alternating direction method of multipliers for a class of linearly constrained convex programming problems with proper closed convex objective functions. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Blocking</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Ergodic processes</subject><subject>Methods</subject><subject>Multipliers</subject><subject>Operators</subject><subject>Programming</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkMtOwzAQRSMEEuWx4A8isYFFYCZOHHtZWh6VWrGBdeQ4buvixMF2JPr3JBSxYDWjqzNHmhtFVwh3iKS4RwSW8Yyyo2iCwPOkQMaPxz1PE5qS7DQ6834HAIxTNol2i6CcCNq2ycw2nVFfOuxju44fjJUfyVzJIbVej0Q8NRvrdNg2PhZtHYetGqLhvh0E7Saea6fkD7hSYWvrUbPqTdCd0cr5i-hkLYxXl7_zPHp_enybvSTL1-fFbLpMZMohJEwRIQTlErEShMk6J5AVDDEDBEJAZQiCiarIM0wRKkoUkRxqltNKCinJeXRz8HbOfvbKh7LRXipjRKts70ukBRIgeZoN6PU_dGf74R0zUAQpJ8iADtTtgZLOeu_UuuycboTblwjl2Hr51zr5Bl-4c9o</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Monteiro, Renato D. C.</creator><creator>Svaiter, Benar F.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers</title><author>Monteiro, Renato D. C. ; Svaiter, Benar F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-8e3aaa69c11ba38cd530478114010330e410a8ab7541210b63e3c90d856bcacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Blocking</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Ergodic processes</topic><topic>Methods</topic><topic>Multipliers</topic><topic>Operators</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Renato D. C.</creatorcontrib><creatorcontrib>Svaiter, Benar F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Renato D. C.</au><au>Svaiter, Benar F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers</atitle><jtitle>SIAM journal on optimization</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>23</volume><issue>1</issue><spage>475</spage><epage>507</epage><pages>475-507</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an approximate sense. Moreover, by showing that any method in this framework is also a special instance of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive corresponding convergence rate results. We also describe some instances of the framework based on specific and inexpensive schemes for solving the single-block proximal subproblems. Finally, we consider some applications of our methodology to establish for the first time (i) the iteration-complexity of an algorithm for finding a zero of the sum of two arbitrary maximal monotone operators and, as a consequence, the ergodic iteration-complexity of the Douglas--Rachford splitting method and (ii) the ergodic iteration-complexity of the classical alternating direction method of multipliers for a class of linearly constrained convex programming problems with proper closed convex objective functions. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110849468</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2013-01, Vol.23 (1), p.475-507 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671303524 |
source | SIAM Journals Online |
subjects | Algorithms Approximation Blocking Convergence Decomposition Ergodic processes Methods Multipliers Operators Programming |
title | Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T02%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iteration-Complexity%20of%20Block-Decomposition%20Algorithms%20and%20the%20Alternating%20Direction%20Method%20of%20Multipliers&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Monteiro,%20Renato%20D.%20C.&rft.date=2013-01-01&rft.volume=23&rft.issue=1&rft.spage=475&rft.epage=507&rft.pages=475-507&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/110849468&rft_dat=%3Cproquest_cross%3E2917745661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316931806&rft_id=info:pmid/&rfr_iscdi=true |