Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach

► We present a new algorithm for camera resection from as few as four correspondences. ► Our approach uses a rigorous probabilistic model for computing MAP estimates. ► Our algorithm also yields global uncertainty estimates (probability maps). ► The problem is shown to be partially linear, which lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 2011-05, Vol.115 (5), p.576-585
Hauptverfasser: Chaperon, Thomas, Droulez, Jacques, Thibault, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 5
container_start_page 576
container_title Computer vision and image understanding
container_volume 115
creator Chaperon, Thomas
Droulez, Jacques
Thibault, Guillaume
description ► We present a new algorithm for camera resection from as few as four correspondences. ► Our approach uses a rigorous probabilistic model for computing MAP estimates. ► Our algorithm also yields global uncertainty estimates (probability maps). ► The problem is shown to be partially linear, which leads to an efficient algorithm. ► Tests show that our method is more stable to Gaussian noise than related methods. We present a new method for solving the problem of camera pose and calibration from a limited number of correspondences between noisy 2D and 3D features. We show that the probabilistic estimation problem can be expressed as a partially linear problem, where point and line correspondences are mixed using a common formulation. Our Sampling-Solving algorithm enables to robustly estimate the parameters and evaluate the probability distribution of the estimated parameters. It solves the problem of pose estimation with unknown focal length using a minimum of only four correspondences (five if the principal point is also unknown). To our knowledge, this is the first calibration method using so few correspondences of both points and lines. Experimental results on minimal data sets show that the algorithm is very robust to Gaussian noise. Experimental comparisons show that our method is much more stable than existing camera calibration methods for small data sets. Finally, some tests show the potential of global uncertainty estimates on real data sets.
doi_str_mv 10.1016/j.cviu.2010.11.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671302787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210002584</els_id><sourcerecordid>1671302787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-1dba2da6583c22c4bfd9a763d3daf48cf72806617ff1619e606881815c7f059c3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxU1oIWnSL9CTjrl4o5F2JbvkEkLbBAKBkEJvYiyNqBbZciRvIN--crbnnOYP7zfDe03zDfgGOKir_ca-hsNG8HUBGw7dSXMGvOetkLs_n9Ze61bCVpw2X0rZcw6w7eGseXmiGHCIxCyOlJHNqRDDydU5hiHjEtLEfE4jQ1ZGjJEVWljyVRim5V0Zw1TxlDOVOU2OJkvlO7thc04DDiGGsgTLcK4z2r8XzWePsdDX__W8-f3zx_PtXfvw-Ov-9uahtVLKpQU3oHCodp20Qtjt4F2PWkknHfptZ70WHVcKtPegoCfFVddBBzurPd_1Vp43l8e79e3LgcpixlAsxYgTpUMxoDRILnSnq1QcpTanUjJ5M-cwYn4zwM2ar9mbNV-z5msATM23QtdHiKqJ10DZFBtW7y5ksotxKXyE_wMIxYUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671302787</pqid></control><display><type>article</type><title>Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chaperon, Thomas ; Droulez, Jacques ; Thibault, Guillaume</creator><creatorcontrib>Chaperon, Thomas ; Droulez, Jacques ; Thibault, Guillaume</creatorcontrib><description>► We present a new algorithm for camera resection from as few as four correspondences. ► Our approach uses a rigorous probabilistic model for computing MAP estimates. ► Our algorithm also yields global uncertainty estimates (probability maps). ► The problem is shown to be partially linear, which leads to an efficient algorithm. ► Tests show that our method is more stable to Gaussian noise than related methods. We present a new method for solving the problem of camera pose and calibration from a limited number of correspondences between noisy 2D and 3D features. We show that the probabilistic estimation problem can be expressed as a partially linear problem, where point and line correspondences are mixed using a common formulation. Our Sampling-Solving algorithm enables to robustly estimate the parameters and evaluate the probability distribution of the estimated parameters. It solves the problem of pose estimation with unknown focal length using a minimum of only four correspondences (five if the principal point is also unknown). To our knowledge, this is the first calibration method using so few correspondences of both points and lines. Experimental results on minimal data sets show that the algorithm is very robust to Gaussian noise. Experimental comparisons show that our method is much more stable than existing camera calibration methods for small data sets. Finally, some tests show the potential of global uncertainty estimates on real data sets.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.11.018</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>2D–3D registration ; Algorithms ; Calibration ; Camera calibration ; Camera pose with unknown focal length ; Cameras ; Estimates ; Maximum A Posteriori (MAP) ; Parameter decomposition ; Partially linear problem ; Point and line correspondences ; Probabilistic estimation ; Probabilistic methods ; Probability theory ; Separable least-squares problem ; Variable projection</subject><ispartof>Computer vision and image understanding, 2011-05, Vol.115 (5), p.576-585</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-1dba2da6583c22c4bfd9a763d3daf48cf72806617ff1619e606881815c7f059c3</citedby><cites>FETCH-LOGICAL-c333t-1dba2da6583c22c4bfd9a763d3daf48cf72806617ff1619e606881815c7f059c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cviu.2010.11.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chaperon, Thomas</creatorcontrib><creatorcontrib>Droulez, Jacques</creatorcontrib><creatorcontrib>Thibault, Guillaume</creatorcontrib><title>Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach</title><title>Computer vision and image understanding</title><description>► We present a new algorithm for camera resection from as few as four correspondences. ► Our approach uses a rigorous probabilistic model for computing MAP estimates. ► Our algorithm also yields global uncertainty estimates (probability maps). ► The problem is shown to be partially linear, which leads to an efficient algorithm. ► Tests show that our method is more stable to Gaussian noise than related methods. We present a new method for solving the problem of camera pose and calibration from a limited number of correspondences between noisy 2D and 3D features. We show that the probabilistic estimation problem can be expressed as a partially linear problem, where point and line correspondences are mixed using a common formulation. Our Sampling-Solving algorithm enables to robustly estimate the parameters and evaluate the probability distribution of the estimated parameters. It solves the problem of pose estimation with unknown focal length using a minimum of only four correspondences (five if the principal point is also unknown). To our knowledge, this is the first calibration method using so few correspondences of both points and lines. Experimental results on minimal data sets show that the algorithm is very robust to Gaussian noise. Experimental comparisons show that our method is much more stable than existing camera calibration methods for small data sets. Finally, some tests show the potential of global uncertainty estimates on real data sets.</description><subject>2D–3D registration</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Camera calibration</subject><subject>Camera pose with unknown focal length</subject><subject>Cameras</subject><subject>Estimates</subject><subject>Maximum A Posteriori (MAP)</subject><subject>Parameter decomposition</subject><subject>Partially linear problem</subject><subject>Point and line correspondences</subject><subject>Probabilistic estimation</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Separable least-squares problem</subject><subject>Variable projection</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxU1oIWnSL9CTjrl4o5F2JbvkEkLbBAKBkEJvYiyNqBbZciRvIN--crbnnOYP7zfDe03zDfgGOKir_ca-hsNG8HUBGw7dSXMGvOetkLs_n9Ze61bCVpw2X0rZcw6w7eGseXmiGHCIxCyOlJHNqRDDydU5hiHjEtLEfE4jQ1ZGjJEVWljyVRim5V0Zw1TxlDOVOU2OJkvlO7thc04DDiGGsgTLcK4z2r8XzWePsdDX__W8-f3zx_PtXfvw-Ov-9uahtVLKpQU3oHCodp20Qtjt4F2PWkknHfptZ70WHVcKtPegoCfFVddBBzurPd_1Vp43l8e79e3LgcpixlAsxYgTpUMxoDRILnSnq1QcpTanUjJ5M-cwYn4zwM2ar9mbNV-z5msATM23QtdHiKqJ10DZFBtW7y5ksotxKXyE_wMIxYUg</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Chaperon, Thomas</creator><creator>Droulez, Jacques</creator><creator>Thibault, Guillaume</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110501</creationdate><title>Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach</title><author>Chaperon, Thomas ; Droulez, Jacques ; Thibault, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-1dba2da6583c22c4bfd9a763d3daf48cf72806617ff1619e606881815c7f059c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2D–3D registration</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Camera calibration</topic><topic>Camera pose with unknown focal length</topic><topic>Cameras</topic><topic>Estimates</topic><topic>Maximum A Posteriori (MAP)</topic><topic>Parameter decomposition</topic><topic>Partially linear problem</topic><topic>Point and line correspondences</topic><topic>Probabilistic estimation</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Separable least-squares problem</topic><topic>Variable projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaperon, Thomas</creatorcontrib><creatorcontrib>Droulez, Jacques</creatorcontrib><creatorcontrib>Thibault, Guillaume</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaperon, Thomas</au><au>Droulez, Jacques</au><au>Thibault, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>115</volume><issue>5</issue><spage>576</spage><epage>585</epage><pages>576-585</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>► We present a new algorithm for camera resection from as few as four correspondences. ► Our approach uses a rigorous probabilistic model for computing MAP estimates. ► Our algorithm also yields global uncertainty estimates (probability maps). ► The problem is shown to be partially linear, which leads to an efficient algorithm. ► Tests show that our method is more stable to Gaussian noise than related methods. We present a new method for solving the problem of camera pose and calibration from a limited number of correspondences between noisy 2D and 3D features. We show that the probabilistic estimation problem can be expressed as a partially linear problem, where point and line correspondences are mixed using a common formulation. Our Sampling-Solving algorithm enables to robustly estimate the parameters and evaluate the probability distribution of the estimated parameters. It solves the problem of pose estimation with unknown focal length using a minimum of only four correspondences (five if the principal point is also unknown). To our knowledge, this is the first calibration method using so few correspondences of both points and lines. Experimental results on minimal data sets show that the algorithm is very robust to Gaussian noise. Experimental comparisons show that our method is much more stable than existing camera calibration methods for small data sets. Finally, some tests show the potential of global uncertainty estimates on real data sets.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.11.018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2011-05, Vol.115 (5), p.576-585
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_1671302787
source ScienceDirect Journals (5 years ago - present)
subjects 2D–3D registration
Algorithms
Calibration
Camera calibration
Camera pose with unknown focal length
Cameras
Estimates
Maximum A Posteriori (MAP)
Parameter decomposition
Partially linear problem
Point and line correspondences
Probabilistic estimation
Probabilistic methods
Probability theory
Separable least-squares problem
Variable projection
title Reliable camera pose and calibration from a small set of point and line correspondences: A probabilistic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20camera%20pose%20and%20calibration%20from%20a%20small%20set%20of%20point%20and%20line%20correspondences:%20A%20probabilistic%20approach&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Chaperon,%20Thomas&rft.date=2011-05-01&rft.volume=115&rft.issue=5&rft.spage=576&rft.epage=585&rft.pages=576-585&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.11.018&rft_dat=%3Cproquest_cross%3E1671302787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671302787&rft_id=info:pmid/&rft_els_id=S1077314210002584&rfr_iscdi=true