Self Quenching Streamer Mode in Quenching Gases Initiated by Alpha Particles

The transition from a proportional to a self quenching streamer mode, as a function of track length and angle, was investigated in a single wire chamber filled with either pure DME or isobutane. The chamber was irradiated with 241 Am alpha particles. An investigation of multistreamer events in DME d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2009-10, Vol.56 (5), p.2880-2884
Hauptverfasser: Davydov, Yu.I., Openshaw, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2884
container_issue 5
container_start_page 2880
container_title IEEE transactions on nuclear science
container_volume 56
creator Davydov, Yu.I.
Openshaw, R.
description The transition from a proportional to a self quenching streamer mode, as a function of track length and angle, was investigated in a single wire chamber filled with either pure DME or isobutane. The chamber was irradiated with 241 Am alpha particles. An investigation of multistreamer events in DME due to alpha particles entering the chamber at 20deg with track length ~ 4 mm gave an estimate of a dead zone, defined as the product of dead length and dead time, to be less than 0.1 mus middot cm. This value is 3 orders of magnitude less than those observed by other groups for noble gases based mixtures. No second streamers were observed with pure isobutane for similar tracks.
doi_str_mv 10.1109/TNS.2009.2029104
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671302674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5280477</ieee_id><sourcerecordid>36358557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-7e59c5e6de3d6d7e142b07a90131a8b5d0f59e8478e2ec5940e059049e69229e3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQQBdRsFbvgpfFg3hJnU12s5ljKVqF-kXredkmU5uSJnU3OfTfu6VFxIOXGYZ5MzDzGLsUMBAC8G72Mh3EABhCjALkEesJpbJIKJ0dsx6AyCKUiKfszPtVKKUC1WOTKVUL_t5RnS_L-pNPW0d2TY4_NwXxsv7VGltPnj_VZVvalgo-3_JhtVla_mZdW-YV-XN2srCVp4tD7rOPh_vZ6DGavI6fRsNJlCdKtpEmhbmitKCkSAtNQsZz0BZBJMJmc1XAQiFlUmcUU65QAoFCkEgpxjFS0mc3-70b13x15FuzLn1OVWVrajpvkjRRmVI6gLf_giLVIoE41TKg13_QVdO5OpxhUITHakQIEOyh3DXeO1qYjSvX1m2NALPTYIIGs9NgDhrCyNV-pCSiH1zFGUitk28IuIEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912007990</pqid></control><display><type>article</type><title>Self Quenching Streamer Mode in Quenching Gases Initiated by Alpha Particles</title><source>IEEE Electronic Library (IEL)</source><creator>Davydov, Yu.I. ; Openshaw, R.</creator><creatorcontrib>Davydov, Yu.I. ; Openshaw, R.</creatorcontrib><description>The transition from a proportional to a self quenching streamer mode, as a function of track length and angle, was investigated in a single wire chamber filled with either pure DME or isobutane. The chamber was irradiated with 241 Am alpha particles. An investigation of multistreamer events in DME due to alpha particles entering the chamber at 20deg with track length ~ 4 mm gave an estimate of a dead zone, defined as the product of dead length and dead time, to be less than 0.1 mus middot cm. This value is 3 orders of magnitude less than those observed by other groups for noble gases based mixtures. No second streamers were observed with pure isobutane for similar tracks.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2009.2029104</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alpha particles ; Alpha rays ; Beta rays ; Chambers ; dead zone ; DME ; Estimates ; Gases ; History ; Ionization ; isobutane ; limited streamer ; Noble gases ; Particle tracking ; Quenching ; Rare gases ; self quenching streamer ; Single wires ; Testing ; Voltage ; Wire</subject><ispartof>IEEE transactions on nuclear science, 2009-10, Vol.56 (5), p.2880-2884</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-7e59c5e6de3d6d7e142b07a90131a8b5d0f59e8478e2ec5940e059049e69229e3</citedby><cites>FETCH-LOGICAL-c354t-7e59c5e6de3d6d7e142b07a90131a8b5d0f59e8478e2ec5940e059049e69229e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5280477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5280477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Davydov, Yu.I.</creatorcontrib><creatorcontrib>Openshaw, R.</creatorcontrib><title>Self Quenching Streamer Mode in Quenching Gases Initiated by Alpha Particles</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The transition from a proportional to a self quenching streamer mode, as a function of track length and angle, was investigated in a single wire chamber filled with either pure DME or isobutane. The chamber was irradiated with 241 Am alpha particles. An investigation of multistreamer events in DME due to alpha particles entering the chamber at 20deg with track length ~ 4 mm gave an estimate of a dead zone, defined as the product of dead length and dead time, to be less than 0.1 mus middot cm. This value is 3 orders of magnitude less than those observed by other groups for noble gases based mixtures. No second streamers were observed with pure isobutane for similar tracks.</description><subject>Alpha particles</subject><subject>Alpha rays</subject><subject>Beta rays</subject><subject>Chambers</subject><subject>dead zone</subject><subject>DME</subject><subject>Estimates</subject><subject>Gases</subject><subject>History</subject><subject>Ionization</subject><subject>isobutane</subject><subject>limited streamer</subject><subject>Noble gases</subject><subject>Particle tracking</subject><subject>Quenching</subject><subject>Rare gases</subject><subject>self quenching streamer</subject><subject>Single wires</subject><subject>Testing</subject><subject>Voltage</subject><subject>Wire</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1Lw0AQQBdRsFbvgpfFg3hJnU12s5ljKVqF-kXredkmU5uSJnU3OfTfu6VFxIOXGYZ5MzDzGLsUMBAC8G72Mh3EABhCjALkEesJpbJIKJ0dsx6AyCKUiKfszPtVKKUC1WOTKVUL_t5RnS_L-pNPW0d2TY4_NwXxsv7VGltPnj_VZVvalgo-3_JhtVla_mZdW-YV-XN2srCVp4tD7rOPh_vZ6DGavI6fRsNJlCdKtpEmhbmitKCkSAtNQsZz0BZBJMJmc1XAQiFlUmcUU65QAoFCkEgpxjFS0mc3-70b13x15FuzLn1OVWVrajpvkjRRmVI6gLf_giLVIoE41TKg13_QVdO5OpxhUITHakQIEOyh3DXeO1qYjSvX1m2NALPTYIIGs9NgDhrCyNV-pCSiH1zFGUitk28IuIEW</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Davydov, Yu.I.</creator><creator>Openshaw, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20091001</creationdate><title>Self Quenching Streamer Mode in Quenching Gases Initiated by Alpha Particles</title><author>Davydov, Yu.I. ; Openshaw, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-7e59c5e6de3d6d7e142b07a90131a8b5d0f59e8478e2ec5940e059049e69229e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alpha particles</topic><topic>Alpha rays</topic><topic>Beta rays</topic><topic>Chambers</topic><topic>dead zone</topic><topic>DME</topic><topic>Estimates</topic><topic>Gases</topic><topic>History</topic><topic>Ionization</topic><topic>isobutane</topic><topic>limited streamer</topic><topic>Noble gases</topic><topic>Particle tracking</topic><topic>Quenching</topic><topic>Rare gases</topic><topic>self quenching streamer</topic><topic>Single wires</topic><topic>Testing</topic><topic>Voltage</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davydov, Yu.I.</creatorcontrib><creatorcontrib>Openshaw, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Davydov, Yu.I.</au><au>Openshaw, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self Quenching Streamer Mode in Quenching Gases Initiated by Alpha Particles</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>56</volume><issue>5</issue><spage>2880</spage><epage>2884</epage><pages>2880-2884</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The transition from a proportional to a self quenching streamer mode, as a function of track length and angle, was investigated in a single wire chamber filled with either pure DME or isobutane. The chamber was irradiated with 241 Am alpha particles. An investigation of multistreamer events in DME due to alpha particles entering the chamber at 20deg with track length ~ 4 mm gave an estimate of a dead zone, defined as the product of dead length and dead time, to be less than 0.1 mus middot cm. This value is 3 orders of magnitude less than those observed by other groups for noble gases based mixtures. No second streamers were observed with pure isobutane for similar tracks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2009.2029104</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2009-10, Vol.56 (5), p.2880-2884
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_1671302674
source IEEE Electronic Library (IEL)
subjects Alpha particles
Alpha rays
Beta rays
Chambers
dead zone
DME
Estimates
Gases
History
Ionization
isobutane
limited streamer
Noble gases
Particle tracking
Quenching
Rare gases
self quenching streamer
Single wires
Testing
Voltage
Wire
title Self Quenching Streamer Mode in Quenching Gases Initiated by Alpha Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%20Quenching%20Streamer%20Mode%20in%20Quenching%20Gases%20Initiated%20by%20Alpha%20Particles&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Davydov,%20Yu.I.&rft.date=2009-10-01&rft.volume=56&rft.issue=5&rft.spage=2880&rft.epage=2884&rft.pages=2880-2884&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2009.2029104&rft_dat=%3Cproquest_RIE%3E36358557%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912007990&rft_id=info:pmid/&rft_ieee_id=5280477&rfr_iscdi=true