The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–Cr–Mn–Mo stainless steel produced by mechanical alloying

► High nitrogen austenitic Fe18Cr10Mn4Mo stainless steel can be produced by MA and without annealing. ► The initial powder particle size plays an important role on the rate of nitrogen absorption and consequently on phase transformation kinetics. ► Nitrogen content in the steel is the most effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011-05, Vol.528 (12), p.3961-3966
Hauptverfasser: Tehrani, F., Abbasi, M.H., Golozar, M.A., Panjepour, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3966
container_issue 12
container_start_page 3961
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 528
creator Tehrani, F.
Abbasi, M.H.
Golozar, M.A.
Panjepour, M.
description ► High nitrogen austenitic Fe18Cr10Mn4Mo stainless steel can be produced by MA and without annealing. ► The initial powder particle size plays an important role on the rate of nitrogen absorption and consequently on phase transformation kinetics. ► Nitrogen content in the steel is the most effective parameter for α to γ kinetic enhancement. In this study, the effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–18Cr–10Mn–4Mo stainless steel, produced by mechanical alloying (MA) was investigated. For this purpose iron powders with two different particle sizes were used. MA was performed under nitrogen atmosphere, using a high-energy planetary ball mill. X-ray diffraction (XRD) patterns and nitrogen analysis revealed that by decreasing the iron mean particle size, a higher transformation rate is obtained due to increase in the rate of nitrogen absorption. Moreover, nitrogen solubility in both milled samples was increased noticeably by increasing the milling time. This is believed to be due to the increase of lattice defects and development of nanostructure through MA. Variations of grain size and internal lattice strain versus milling time, for both iron particle sizes, showed that the critical ferrite grain size for austenite nucleation is less than 10 nm.
doi_str_mv 10.1016/j.msea.2010.12.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671298840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509310014498</els_id><sourcerecordid>1671298840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6d838d9ddc98a20fee2815898d08b53994efbb341da62c6f5931d3048b8cbe1f3</originalsourceid><addsrcrecordid>eNp9UTuOFDEQtRBIDAsXIHKCRNKDP909tkSCRiystIhkiS23XZ7xqNsebDdoNuIOHIMI7T32EJwEt2ZFSFIuPb33ylUPoZeUrCmh_ZvDesqg14wsAFuTlj9CKyo2vGkl7x-jFZGMNh2R_Cl6lvOBEEJb0q3Qr5s9YHAOTMHR4aNOxZsRcPa3sAA-xYCP8buFhGt3_xuXiO_vcEk6ZBfTpIuvuA-4VKOgQ8wlzabMCSze-90eB19S3EHAl_Dnx89tquVTWErEuWgfRsi5dgAjPqZoZ1OFwwlPYPY6eKNHrMcxnnzYPUdPnB4zvHh4L9CXy_c324_N9ecPV9t3143hPS9NbwUXVlprpNCMOAAmaCeksEQMHZeyBTcMvKVW98z0rpOcWk5aMQgzAHX8Ar0--9b_fJ0hFzX5bGAcdYA4Z0X7DWVSiJZUKjtTTYo5J3DqmPyk00lRopZk1EEtyaglGUWZqslU0asHf53rfq6e0vj8T8laQvlGdpX39syDuuw3D0ll4yHUA_lU81I2-v-N-Qv2M6wR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671298840</pqid></control><display><type>article</type><title>The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–Cr–Mn–Mo stainless steel produced by mechanical alloying</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tehrani, F. ; Abbasi, M.H. ; Golozar, M.A. ; Panjepour, M.</creator><creatorcontrib>Tehrani, F. ; Abbasi, M.H. ; Golozar, M.A. ; Panjepour, M.</creatorcontrib><description>► High nitrogen austenitic Fe18Cr10Mn4Mo stainless steel can be produced by MA and without annealing. ► The initial powder particle size plays an important role on the rate of nitrogen absorption and consequently on phase transformation kinetics. ► Nitrogen content in the steel is the most effective parameter for α to γ kinetic enhancement. In this study, the effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–18Cr–10Mn–4Mo stainless steel, produced by mechanical alloying (MA) was investigated. For this purpose iron powders with two different particle sizes were used. MA was performed under nitrogen atmosphere, using a high-energy planetary ball mill. X-ray diffraction (XRD) patterns and nitrogen analysis revealed that by decreasing the iron mean particle size, a higher transformation rate is obtained due to increase in the rate of nitrogen absorption. Moreover, nitrogen solubility in both milled samples was increased noticeably by increasing the milling time. This is believed to be due to the increase of lattice defects and development of nanostructure through MA. Variations of grain size and internal lattice strain versus milling time, for both iron particle sizes, showed that the critical ferrite grain size for austenite nucleation is less than 10 nm.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.12.043</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Austenitic stainless steels ; Ball milling ; Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Grain boundaries ; Grain size ; Iron ; Materials science ; Mechanical alloying ; Metals. Metallurgy ; Nanostructure ; Nanostructured ; Particle size ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase transformation ; Physics ; Powder metallurgy. Composite materials ; Production techniques ; Stainless steels ; Steel ; Steels ; Technology ; Transformations</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2011-05, Vol.528 (12), p.3961-3966</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6d838d9ddc98a20fee2815898d08b53994efbb341da62c6f5931d3048b8cbe1f3</citedby><cites>FETCH-LOGICAL-c363t-6d838d9ddc98a20fee2815898d08b53994efbb341da62c6f5931d3048b8cbe1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2010.12.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24013795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tehrani, F.</creatorcontrib><creatorcontrib>Abbasi, M.H.</creatorcontrib><creatorcontrib>Golozar, M.A.</creatorcontrib><creatorcontrib>Panjepour, M.</creatorcontrib><title>The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–Cr–Mn–Mo stainless steel produced by mechanical alloying</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>► High nitrogen austenitic Fe18Cr10Mn4Mo stainless steel can be produced by MA and without annealing. ► The initial powder particle size plays an important role on the rate of nitrogen absorption and consequently on phase transformation kinetics. ► Nitrogen content in the steel is the most effective parameter for α to γ kinetic enhancement. In this study, the effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–18Cr–10Mn–4Mo stainless steel, produced by mechanical alloying (MA) was investigated. For this purpose iron powders with two different particle sizes were used. MA was performed under nitrogen atmosphere, using a high-energy planetary ball mill. X-ray diffraction (XRD) patterns and nitrogen analysis revealed that by decreasing the iron mean particle size, a higher transformation rate is obtained due to increase in the rate of nitrogen absorption. Moreover, nitrogen solubility in both milled samples was increased noticeably by increasing the milling time. This is believed to be due to the increase of lattice defects and development of nanostructure through MA. Variations of grain size and internal lattice strain versus milling time, for both iron particle sizes, showed that the critical ferrite grain size for austenite nucleation is less than 10 nm.</description><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Ball milling</subject><subject>Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Iron</subject><subject>Materials science</subject><subject>Mechanical alloying</subject><subject>Metals. Metallurgy</subject><subject>Nanostructure</subject><subject>Nanostructured</subject><subject>Particle size</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase transformation</subject><subject>Physics</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Stainless steels</subject><subject>Steel</subject><subject>Steels</subject><subject>Technology</subject><subject>Transformations</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UTuOFDEQtRBIDAsXIHKCRNKDP909tkSCRiystIhkiS23XZ7xqNsebDdoNuIOHIMI7T32EJwEt2ZFSFIuPb33ylUPoZeUrCmh_ZvDesqg14wsAFuTlj9CKyo2vGkl7x-jFZGMNh2R_Cl6lvOBEEJb0q3Qr5s9YHAOTMHR4aNOxZsRcPa3sAA-xYCP8buFhGt3_xuXiO_vcEk6ZBfTpIuvuA-4VKOgQ8wlzabMCSze-90eB19S3EHAl_Dnx89tquVTWErEuWgfRsi5dgAjPqZoZ1OFwwlPYPY6eKNHrMcxnnzYPUdPnB4zvHh4L9CXy_c324_N9ecPV9t3143hPS9NbwUXVlprpNCMOAAmaCeksEQMHZeyBTcMvKVW98z0rpOcWk5aMQgzAHX8Ar0--9b_fJ0hFzX5bGAcdYA4Z0X7DWVSiJZUKjtTTYo5J3DqmPyk00lRopZk1EEtyaglGUWZqslU0asHf53rfq6e0vj8T8laQvlGdpX39syDuuw3D0ll4yHUA_lU81I2-v-N-Qv2M6wR</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Tehrani, F.</creator><creator>Abbasi, M.H.</creator><creator>Golozar, M.A.</creator><creator>Panjepour, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110515</creationdate><title>The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–Cr–Mn–Mo stainless steel produced by mechanical alloying</title><author>Tehrani, F. ; Abbasi, M.H. ; Golozar, M.A. ; Panjepour, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6d838d9ddc98a20fee2815898d08b53994efbb341da62c6f5931d3048b8cbe1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Ball milling</topic><topic>Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Iron</topic><topic>Materials science</topic><topic>Mechanical alloying</topic><topic>Metals. Metallurgy</topic><topic>Nanostructure</topic><topic>Nanostructured</topic><topic>Particle size</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase transformation</topic><topic>Physics</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Stainless steels</topic><topic>Steel</topic><topic>Steels</topic><topic>Technology</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tehrani, F.</creatorcontrib><creatorcontrib>Abbasi, M.H.</creatorcontrib><creatorcontrib>Golozar, M.A.</creatorcontrib><creatorcontrib>Panjepour, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tehrani, F.</au><au>Abbasi, M.H.</au><au>Golozar, M.A.</au><au>Panjepour, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–Cr–Mn–Mo stainless steel produced by mechanical alloying</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011-05-15</date><risdate>2011</risdate><volume>528</volume><issue>12</issue><spage>3961</spage><epage>3966</epage><pages>3961-3966</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► High nitrogen austenitic Fe18Cr10Mn4Mo stainless steel can be produced by MA and without annealing. ► The initial powder particle size plays an important role on the rate of nitrogen absorption and consequently on phase transformation kinetics. ► Nitrogen content in the steel is the most effective parameter for α to γ kinetic enhancement. In this study, the effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–18Cr–10Mn–4Mo stainless steel, produced by mechanical alloying (MA) was investigated. For this purpose iron powders with two different particle sizes were used. MA was performed under nitrogen atmosphere, using a high-energy planetary ball mill. X-ray diffraction (XRD) patterns and nitrogen analysis revealed that by decreasing the iron mean particle size, a higher transformation rate is obtained due to increase in the rate of nitrogen absorption. Moreover, nitrogen solubility in both milled samples was increased noticeably by increasing the milling time. This is believed to be due to the increase of lattice defects and development of nanostructure through MA. Variations of grain size and internal lattice strain versus milling time, for both iron particle sizes, showed that the critical ferrite grain size for austenite nucleation is less than 10 nm.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2010.12.043</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-05, Vol.528 (12), p.3961-3966
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1671298840
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Austenitic stainless steels
Ball milling
Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Grain boundaries
Grain size
Iron
Materials science
Mechanical alloying
Metals. Metallurgy
Nanostructure
Nanostructured
Particle size
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Phase transformation
Physics
Powder metallurgy. Composite materials
Production techniques
Stainless steels
Steel
Steels
Technology
Transformations
title The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe–Cr–Mn–Mo stainless steel produced by mechanical alloying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20particle%20size%20of%20iron%20powder%20on%20%CE%B1%20to%20%CE%B3%20transformation%20in%20the%20nanostructured%20high%20nitrogen%20Fe%E2%80%93Cr%E2%80%93Mn%E2%80%93Mo%20stainless%20steel%20produced%20by%20mechanical%20alloying&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Tehrani,%20F.&rft.date=2011-05-15&rft.volume=528&rft.issue=12&rft.spage=3961&rft.epage=3966&rft.pages=3961-3966&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.12.043&rft_dat=%3Cproquest_cross%3E1671298840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671298840&rft_id=info:pmid/&rft_els_id=S0921509310014498&rfr_iscdi=true