on-State Performance Enhancement and Channel-Direction-Dependent Performance of a Biaxial Compressive Strained hbox Si 0.5 hbox Ge 0.5 Quantum-Well pMOSFET Along < hbox 110 > and < hbox 100 > Channel Directions

pMOSFET performance of high Ge content ( similar to 50%) biaxial compressive strained SiGe heterostructure channel pMOSFETs is characterized, and performance between < hbox 110 > and < hbox 100 > channel orientations on a (001) substrate is compared for physical channel lengths down to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-04, Vol.58 (4), p.985-995
Hauptverfasser: Lee, Se-Hoon, Nainani, Aneesh, Oh, Jungwoo, Jeon, Kanghoon, Kirsch, Paul D, Majhi, Prashant, Register, Leonard Franklin, Banerjee, Sanjay K, Jammy, Raj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 4
container_start_page 985
container_title IEEE transactions on electron devices
container_volume 58
creator Lee, Se-Hoon
Nainani, Aneesh
Oh, Jungwoo
Jeon, Kanghoon
Kirsch, Paul D
Majhi, Prashant
Register, Leonard Franklin
Banerjee, Sanjay K
Jammy, Raj
description pMOSFET performance of high Ge content ( similar to 50%) biaxial compressive strained SiGe heterostructure channel pMOSFETs is characterized, and performance between < hbox 110 > and < hbox 100 > channel orientations on a (001) substrate is compared for physical channel lengths down to similar to 80 nm. Temperature-dependent mobility and velocity are characterized for both channel directions. First, it is shown that high Ge content SiGe-based channels can deliver drive current enhancement over unstrained Si below sub-100-nm channel lengths. Second, it is found that, with a higher Ge content SiGe channel under biaxial compressive strain, there is a difference of drive current between < hbox 110 > and < hbox 100 > channel directions, and the difference increases when temperature is lowered and/or when channel length is scaled down. An external series resistance difference is detected between two channel directions, although it appears to be insufficient to explain all the direction-dependent drive current difference. Channel transport behavior in different channel orientations can be clearly observed with low external source/drain (S/D) series resistance achieved with a millisecond S/D dopant activation anneal process while controlling the thermal budget. Two possibilities have been investigated to understand channel-direction-dependent performance: possible differences in effects of device processing impact between two channel directions and anisotropic transport effects from an anisotropic hole band structure, particularly under biaxial compressive strain in a SiGe channel pseudomorphically grown on a Si substrate.
doi_str_mv 10.1109/TED.2011.2105876
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671298641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671298641</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16712986413</originalsourceid><addsrcrecordid>eNqVT01PhDAQbYwm4sfd4xy9gC3fJMZEAfVi1LCJx02Fwa0pLdJi9nf6i4Td1Xj1NO_NvDfzhpAzRj3GaHaxKAvPp4x5PqNRmsR7xGFRlLhZHMb7xKGUpW4WpMEhOTLmfaJxGPoO-dLKrSy3CE84tHrouKoRSrWaa4fKAlcN5BNVKN1CDFhbMXkK7FE18_yvT7fA4UbwteASct31AxojPhEqO3ChsIHVq15DJYB60Rbf4QY_j1zZsXNfUEroHx6r23IB11KrN7jcCqcv4WqT5qdB58YuGvxGMyfkoOXS4OmuHpPzaVl-7_aD_hjR2GUnTD3d4Qr1aJYsTpifpXHIgn9IvwEWxXOv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671298641</pqid></control><display><type>article</type><title>on-State Performance Enhancement and Channel-Direction-Dependent Performance of a Biaxial Compressive Strained hbox Si 0.5 hbox Ge 0.5 Quantum-Well pMOSFET Along &lt; hbox 110 &gt; and &lt; hbox 100 &gt; Channel Directions</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Se-Hoon ; Nainani, Aneesh ; Oh, Jungwoo ; Jeon, Kanghoon ; Kirsch, Paul D ; Majhi, Prashant ; Register, Leonard Franklin ; Banerjee, Sanjay K ; Jammy, Raj</creator><creatorcontrib>Lee, Se-Hoon ; Nainani, Aneesh ; Oh, Jungwoo ; Jeon, Kanghoon ; Kirsch, Paul D ; Majhi, Prashant ; Register, Leonard Franklin ; Banerjee, Sanjay K ; Jammy, Raj</creatorcontrib><description>pMOSFET performance of high Ge content ( similar to 50%) biaxial compressive strained SiGe heterostructure channel pMOSFETs is characterized, and performance between &lt; hbox 110 &gt; and &lt; hbox 100 &gt; channel orientations on a (001) substrate is compared for physical channel lengths down to similar to 80 nm. Temperature-dependent mobility and velocity are characterized for both channel directions. First, it is shown that high Ge content SiGe-based channels can deliver drive current enhancement over unstrained Si below sub-100-nm channel lengths. Second, it is found that, with a higher Ge content SiGe channel under biaxial compressive strain, there is a difference of drive current between &lt; hbox 110 &gt; and &lt; hbox 100 &gt; channel directions, and the difference increases when temperature is lowered and/or when channel length is scaled down. An external series resistance difference is detected between two channel directions, although it appears to be insufficient to explain all the direction-dependent drive current difference. Channel transport behavior in different channel orientations can be clearly observed with low external source/drain (S/D) series resistance achieved with a millisecond S/D dopant activation anneal process while controlling the thermal budget. Two possibilities have been investigated to understand channel-direction-dependent performance: possible differences in effects of device processing impact between two channel directions and anisotropic transport effects from an anisotropic hole band structure, particularly under biaxial compressive strain in a SiGe channel pseudomorphically grown on a Si substrate.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2105876</identifier><language>eng</language><subject>Anisotropy ; Channels ; Compressive properties ; Devices ; Germanium ; Orientation ; Performance enhancement ; Silicon germanides ; Strain</subject><ispartof>IEEE transactions on electron devices, 2011-04, Vol.58 (4), p.985-995</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Se-Hoon</creatorcontrib><creatorcontrib>Nainani, Aneesh</creatorcontrib><creatorcontrib>Oh, Jungwoo</creatorcontrib><creatorcontrib>Jeon, Kanghoon</creatorcontrib><creatorcontrib>Kirsch, Paul D</creatorcontrib><creatorcontrib>Majhi, Prashant</creatorcontrib><creatorcontrib>Register, Leonard Franklin</creatorcontrib><creatorcontrib>Banerjee, Sanjay K</creatorcontrib><creatorcontrib>Jammy, Raj</creatorcontrib><title>on-State Performance Enhancement and Channel-Direction-Dependent Performance of a Biaxial Compressive Strained hbox Si 0.5 hbox Ge 0.5 Quantum-Well pMOSFET Along &lt; hbox 110 &gt; and &lt; hbox 100 &gt; Channel Directions</title><title>IEEE transactions on electron devices</title><description>pMOSFET performance of high Ge content ( similar to 50%) biaxial compressive strained SiGe heterostructure channel pMOSFETs is characterized, and performance between &lt; hbox 110 &gt; and &lt; hbox 100 &gt; channel orientations on a (001) substrate is compared for physical channel lengths down to similar to 80 nm. Temperature-dependent mobility and velocity are characterized for both channel directions. First, it is shown that high Ge content SiGe-based channels can deliver drive current enhancement over unstrained Si below sub-100-nm channel lengths. Second, it is found that, with a higher Ge content SiGe channel under biaxial compressive strain, there is a difference of drive current between &lt; hbox 110 &gt; and &lt; hbox 100 &gt; channel directions, and the difference increases when temperature is lowered and/or when channel length is scaled down. An external series resistance difference is detected between two channel directions, although it appears to be insufficient to explain all the direction-dependent drive current difference. Channel transport behavior in different channel orientations can be clearly observed with low external source/drain (S/D) series resistance achieved with a millisecond S/D dopant activation anneal process while controlling the thermal budget. Two possibilities have been investigated to understand channel-direction-dependent performance: possible differences in effects of device processing impact between two channel directions and anisotropic transport effects from an anisotropic hole band structure, particularly under biaxial compressive strain in a SiGe channel pseudomorphically grown on a Si substrate.</description><subject>Anisotropy</subject><subject>Channels</subject><subject>Compressive properties</subject><subject>Devices</subject><subject>Germanium</subject><subject>Orientation</subject><subject>Performance enhancement</subject><subject>Silicon germanides</subject><subject>Strain</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVT01PhDAQbYwm4sfd4xy9gC3fJMZEAfVi1LCJx02Fwa0pLdJi9nf6i4Td1Xj1NO_NvDfzhpAzRj3GaHaxKAvPp4x5PqNRmsR7xGFRlLhZHMb7xKGUpW4WpMEhOTLmfaJxGPoO-dLKrSy3CE84tHrouKoRSrWaa4fKAlcN5BNVKN1CDFhbMXkK7FE18_yvT7fA4UbwteASct31AxojPhEqO3ChsIHVq15DJYB60Rbf4QY_j1zZsXNfUEroHx6r23IB11KrN7jcCqcv4WqT5qdB58YuGvxGMyfkoOXS4OmuHpPzaVl-7_aD_hjR2GUnTD3d4Qr1aJYsTpifpXHIgn9IvwEWxXOv</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Lee, Se-Hoon</creator><creator>Nainani, Aneesh</creator><creator>Oh, Jungwoo</creator><creator>Jeon, Kanghoon</creator><creator>Kirsch, Paul D</creator><creator>Majhi, Prashant</creator><creator>Register, Leonard Franklin</creator><creator>Banerjee, Sanjay K</creator><creator>Jammy, Raj</creator><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>on-State Performance Enhancement and Channel-Direction-Dependent Performance of a Biaxial Compressive Strained hbox Si 0.5 hbox Ge 0.5 Quantum-Well pMOSFET Along &lt; hbox 110 &gt; and &lt; hbox 100 &gt; Channel Directions</title><author>Lee, Se-Hoon ; Nainani, Aneesh ; Oh, Jungwoo ; Jeon, Kanghoon ; Kirsch, Paul D ; Majhi, Prashant ; Register, Leonard Franklin ; Banerjee, Sanjay K ; Jammy, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16712986413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Channels</topic><topic>Compressive properties</topic><topic>Devices</topic><topic>Germanium</topic><topic>Orientation</topic><topic>Performance enhancement</topic><topic>Silicon germanides</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Se-Hoon</creatorcontrib><creatorcontrib>Nainani, Aneesh</creatorcontrib><creatorcontrib>Oh, Jungwoo</creatorcontrib><creatorcontrib>Jeon, Kanghoon</creatorcontrib><creatorcontrib>Kirsch, Paul D</creatorcontrib><creatorcontrib>Majhi, Prashant</creatorcontrib><creatorcontrib>Register, Leonard Franklin</creatorcontrib><creatorcontrib>Banerjee, Sanjay K</creatorcontrib><creatorcontrib>Jammy, Raj</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Se-Hoon</au><au>Nainani, Aneesh</au><au>Oh, Jungwoo</au><au>Jeon, Kanghoon</au><au>Kirsch, Paul D</au><au>Majhi, Prashant</au><au>Register, Leonard Franklin</au><au>Banerjee, Sanjay K</au><au>Jammy, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>on-State Performance Enhancement and Channel-Direction-Dependent Performance of a Biaxial Compressive Strained hbox Si 0.5 hbox Ge 0.5 Quantum-Well pMOSFET Along &lt; hbox 110 &gt; and &lt; hbox 100 &gt; Channel Directions</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>58</volume><issue>4</issue><spage>985</spage><epage>995</epage><pages>985-995</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><abstract>pMOSFET performance of high Ge content ( similar to 50%) biaxial compressive strained SiGe heterostructure channel pMOSFETs is characterized, and performance between &lt; hbox 110 &gt; and &lt; hbox 100 &gt; channel orientations on a (001) substrate is compared for physical channel lengths down to similar to 80 nm. Temperature-dependent mobility and velocity are characterized for both channel directions. First, it is shown that high Ge content SiGe-based channels can deliver drive current enhancement over unstrained Si below sub-100-nm channel lengths. Second, it is found that, with a higher Ge content SiGe channel under biaxial compressive strain, there is a difference of drive current between &lt; hbox 110 &gt; and &lt; hbox 100 &gt; channel directions, and the difference increases when temperature is lowered and/or when channel length is scaled down. An external series resistance difference is detected between two channel directions, although it appears to be insufficient to explain all the direction-dependent drive current difference. Channel transport behavior in different channel orientations can be clearly observed with low external source/drain (S/D) series resistance achieved with a millisecond S/D dopant activation anneal process while controlling the thermal budget. Two possibilities have been investigated to understand channel-direction-dependent performance: possible differences in effects of device processing impact between two channel directions and anisotropic transport effects from an anisotropic hole band structure, particularly under biaxial compressive strain in a SiGe channel pseudomorphically grown on a Si substrate.</abstract><doi>10.1109/TED.2011.2105876</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-04, Vol.58 (4), p.985-995
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_1671298641
source IEEE Electronic Library (IEL)
subjects Anisotropy
Channels
Compressive properties
Devices
Germanium
Orientation
Performance enhancement
Silicon germanides
Strain
title on-State Performance Enhancement and Channel-Direction-Dependent Performance of a Biaxial Compressive Strained hbox Si 0.5 hbox Ge 0.5 Quantum-Well pMOSFET Along < hbox 110 > and < hbox 100 > Channel Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=on-State%20Performance%20Enhancement%20and%20Channel-Direction-Dependent%20Performance%20of%20a%20Biaxial%20Compressive%20Strained%20hbox%20Si%200.5%20hbox%20Ge%200.5%20Quantum-Well%20pMOSFET%20Along%20%3C%20hbox%20110%20%3E%20and%20%3C%20hbox%20100%20%3E%20Channel%20Directions&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lee,%20Se-Hoon&rft.date=2011-04-01&rft.volume=58&rft.issue=4&rft.spage=985&rft.epage=995&rft.pages=985-995&rft.issn=0018-9383&rft.eissn=1557-9646&rft_id=info:doi/10.1109/TED.2011.2105876&rft_dat=%3Cproquest%3E1671298641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671298641&rft_id=info:pmid/&rfr_iscdi=true