Inferring rules for adverse load combinations to crack in concrete dam from monitoring data using adaptive neuro-fuzzy inference system

The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads. As cracks especially unstable cracks are of great danger to the safety of dams, it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2012, Vol.55 (1), p.136-141
Hauptverfasser: Xu, HongZhong, Li, XueHong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 136
container_title Science China. Technological sciences
container_volume 55
creator Xu, HongZhong
Li, XueHong
description The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads. As cracks especially unstable cracks are of great danger to the safety of dams, it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability of cracks. Conventionally, the adverse load combinations have to be deter- mined empirically by experts based on specific dam site conditions. Therefore, it is attractive to apply quantitative instead of empirical methods to identify the adverse loading conditions. In this study, we employ an adaptive neuro-fuzzy inference sys- tem (ANFIS) to Chencun concrete dam. The ANFIS is able to help us build a relationship between the model inputs (reservoir water level and air temperature) and the model output (crack opening displacement). Based on this relationship, the rules of the adverse load combinations to the crack are generated directly from the monitoring data. The accuracy of the trained ANFIS is proved by comparing the modeling results and the monitoring data. Our work demonstrates that the ANFIS is a useful approach for accurately recognizing the rules of the adverse load combinations that can be used in the knowledge base of dam safety expert system.
doi_str_mv 10.1007/s11431-011-4638-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671296771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40719749</cqvip_id><sourcerecordid>1671296771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b2f8cea459168e5bec5981b6979589a5c3996084d65b14021a31f195dc5d1b4e3</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxQdRsNR-AHcRN26iufk3yVKK1kLBja5DJnOnTp1JXpNM4b0v4Nc2z1cUXGg2uZDfOYfc03Uvgb0Fxvp3BUAKoAyASi0MPTzpzsBoS8Ey9rTNupe0Fxyedxel3LF2hLEM5Fn34zpOmPMcb0neFixkSpn48QFzQbIkP5KQ1mGOvs4pFlITCdmH72SO7SGGjBXJ6Fcy5bSSNcW5pl9mo6-ebOU4-tHv6vyAJOKWE522w2Hf9C0WY0BS9qXi-qJ7Nvml4MXjfd59_fjhy-UnevP56vry_Q0NUkGlA59MQC-VBW1QDRiUNTBo21tlrFdBWKuZkaNWA0jGwQuYwKoxqBEGieK8e3Py3eV0v2Gpbp1LwGXxEdNWXFsVcKv7Hv6PMs6NlNyYhr7-C71LW47tI45LJoXVIFij4ESFnErJOLldnlef983KHYt0pyJdK9Idi3SHpuEnTdkd94r5j_O_RK8eg76leHvfdL-TJOvB9tKKn30OrR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404396130</pqid></control><display><type>article</type><title>Inferring rules for adverse load combinations to crack in concrete dam from monitoring data using adaptive neuro-fuzzy inference system</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, HongZhong ; Li, XueHong</creator><creatorcontrib>Xu, HongZhong ; Li, XueHong</creatorcontrib><description>The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads. As cracks especially unstable cracks are of great danger to the safety of dams, it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability of cracks. Conventionally, the adverse load combinations have to be deter- mined empirically by experts based on specific dam site conditions. Therefore, it is attractive to apply quantitative instead of empirical methods to identify the adverse loading conditions. In this study, we employ an adaptive neuro-fuzzy inference sys- tem (ANFIS) to Chencun concrete dam. The ANFIS is able to help us build a relationship between the model inputs (reservoir water level and air temperature) and the model output (crack opening displacement). Based on this relationship, the rules of the adverse load combinations to the crack are generated directly from the monitoring data. The accuracy of the trained ANFIS is proved by comparing the modeling results and the monitoring data. Our work demonstrates that the ANFIS is a useful approach for accurately recognizing the rules of the adverse load combinations that can be used in the knowledge base of dam safety expert system.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-011-4638-z</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Adaptive systems ; Air temperature ; Artificial neural networks ; Concrete dams ; Concretes ; Construction ; Crack opening displacement ; Crack propagation ; Cracks ; Dam safety ; Dam stability ; Dams ; Damsites ; Engineering ; Expert systems ; Fuzzy logic ; Fuzzy systems ; Identification methods ; Inference ; Knowledge bases (artificial intelligence) ; Load ; Monitoring ; Water levels</subject><ispartof>Science China. Technological sciences, 2012, Vol.55 (1), p.136-141</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b2f8cea459168e5bec5981b6979589a5c3996084d65b14021a31f195dc5d1b4e3</citedby><cites>FETCH-LOGICAL-c451t-b2f8cea459168e5bec5981b6979589a5c3996084d65b14021a31f195dc5d1b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60110X/60110X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-011-4638-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-011-4638-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, HongZhong</creatorcontrib><creatorcontrib>Li, XueHong</creatorcontrib><title>Inferring rules for adverse load combinations to crack in concrete dam from monitoring data using adaptive neuro-fuzzy inference system</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><addtitle>SCIENCE CHINA Technological Sciences</addtitle><description>The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads. As cracks especially unstable cracks are of great danger to the safety of dams, it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability of cracks. Conventionally, the adverse load combinations have to be deter- mined empirically by experts based on specific dam site conditions. Therefore, it is attractive to apply quantitative instead of empirical methods to identify the adverse loading conditions. In this study, we employ an adaptive neuro-fuzzy inference sys- tem (ANFIS) to Chencun concrete dam. The ANFIS is able to help us build a relationship between the model inputs (reservoir water level and air temperature) and the model output (crack opening displacement). Based on this relationship, the rules of the adverse load combinations to the crack are generated directly from the monitoring data. The accuracy of the trained ANFIS is proved by comparing the modeling results and the monitoring data. Our work demonstrates that the ANFIS is a useful approach for accurately recognizing the rules of the adverse load combinations that can be used in the knowledge base of dam safety expert system.</description><subject>Adaptive systems</subject><subject>Air temperature</subject><subject>Artificial neural networks</subject><subject>Concrete dams</subject><subject>Concretes</subject><subject>Construction</subject><subject>Crack opening displacement</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Dam safety</subject><subject>Dam stability</subject><subject>Dams</subject><subject>Damsites</subject><subject>Engineering</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Identification methods</subject><subject>Inference</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Load</subject><subject>Monitoring</subject><subject>Water levels</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rFTEUxQdRsNR-AHcRN26iufk3yVKK1kLBja5DJnOnTp1JXpNM4b0v4Nc2z1cUXGg2uZDfOYfc03Uvgb0Fxvp3BUAKoAyASi0MPTzpzsBoS8Ey9rTNupe0Fxyedxel3LF2hLEM5Fn34zpOmPMcb0neFixkSpn48QFzQbIkP5KQ1mGOvs4pFlITCdmH72SO7SGGjBXJ6Fcy5bSSNcW5pl9mo6-ebOU4-tHv6vyAJOKWE522w2Hf9C0WY0BS9qXi-qJ7Nvml4MXjfd59_fjhy-UnevP56vry_Q0NUkGlA59MQC-VBW1QDRiUNTBo21tlrFdBWKuZkaNWA0jGwQuYwKoxqBEGieK8e3Py3eV0v2Gpbp1LwGXxEdNWXFsVcKv7Hv6PMs6NlNyYhr7-C71LW47tI45LJoXVIFij4ESFnErJOLldnlef983KHYt0pyJdK9Idi3SHpuEnTdkd94r5j_O_RK8eg76leHvfdL-TJOvB9tKKn30OrR8</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Xu, HongZhong</creator><creator>Li, XueHong</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>2012</creationdate><title>Inferring rules for adverse load combinations to crack in concrete dam from monitoring data using adaptive neuro-fuzzy inference system</title><author>Xu, HongZhong ; Li, XueHong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b2f8cea459168e5bec5981b6979589a5c3996084d65b14021a31f195dc5d1b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive systems</topic><topic>Air temperature</topic><topic>Artificial neural networks</topic><topic>Concrete dams</topic><topic>Concretes</topic><topic>Construction</topic><topic>Crack opening displacement</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Dam safety</topic><topic>Dam stability</topic><topic>Dams</topic><topic>Damsites</topic><topic>Engineering</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Identification methods</topic><topic>Inference</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Load</topic><topic>Monitoring</topic><topic>Water levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, HongZhong</creatorcontrib><creatorcontrib>Li, XueHong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, HongZhong</au><au>Li, XueHong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring rules for adverse load combinations to crack in concrete dam from monitoring data using adaptive neuro-fuzzy inference system</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><addtitle>SCIENCE CHINA Technological Sciences</addtitle><date>2012</date><risdate>2012</risdate><volume>55</volume><issue>1</issue><spage>136</spage><epage>141</epage><pages>136-141</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads. As cracks especially unstable cracks are of great danger to the safety of dams, it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability of cracks. Conventionally, the adverse load combinations have to be deter- mined empirically by experts based on specific dam site conditions. Therefore, it is attractive to apply quantitative instead of empirical methods to identify the adverse loading conditions. In this study, we employ an adaptive neuro-fuzzy inference sys- tem (ANFIS) to Chencun concrete dam. The ANFIS is able to help us build a relationship between the model inputs (reservoir water level and air temperature) and the model output (crack opening displacement). Based on this relationship, the rules of the adverse load combinations to the crack are generated directly from the monitoring data. The accuracy of the trained ANFIS is proved by comparing the modeling results and the monitoring data. Our work demonstrates that the ANFIS is a useful approach for accurately recognizing the rules of the adverse load combinations that can be used in the knowledge base of dam safety expert system.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11431-011-4638-z</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2012, Vol.55 (1), p.136-141
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_miscellaneous_1671296771
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Adaptive systems
Air temperature
Artificial neural networks
Concrete dams
Concretes
Construction
Crack opening displacement
Crack propagation
Cracks
Dam safety
Dam stability
Dams
Damsites
Engineering
Expert systems
Fuzzy logic
Fuzzy systems
Identification methods
Inference
Knowledge bases (artificial intelligence)
Load
Monitoring
Water levels
title Inferring rules for adverse load combinations to crack in concrete dam from monitoring data using adaptive neuro-fuzzy inference system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20rules%20for%20adverse%20load%20combinations%20to%20crack%20in%20concrete%20dam%20from%20monitoring%20data%20using%20adaptive%20neuro-fuzzy%20inference%20system&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Xu,%20HongZhong&rft.date=2012&rft.volume=55&rft.issue=1&rft.spage=136&rft.epage=141&rft.pages=136-141&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-011-4638-z&rft_dat=%3Cproquest_cross%3E1671296771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404396130&rft_id=info:pmid/&rft_cqvip_id=40719749&rfr_iscdi=true