Measures of uncertainty for imprecise probabilities: An axiomatic approach
The aim of this paper is to formalize, within a broad range of theories of imprecise probabilities, the notion of a total, aggregate measure of uncertainty and its various disaggregations into measures of nonspecificity and conflict. As a framework for facilitating this aim, we introduce a system of...
Gespeichert in:
Veröffentlicht in: | International journal of approximate reasoning 2010-03, Vol.51 (4), p.365-390 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | 4 |
container_start_page | 365 |
container_title | International journal of approximate reasoning |
container_volume | 51 |
creator | Bronevich, Andrey Klir, George J. |
description | The aim of this paper is to formalize, within a broad range of theories of imprecise probabilities, the notion of a total, aggregate measure of uncertainty and its various disaggregations into measures of nonspecificity and conflict. As a framework for facilitating this aim, we introduce a system of well-justified axiomatic requirements for such measures. It is shown that these requirements can be equivalently defined for belief functions and credal sets. Some important consequences are then derived within this framework, which clarify the role of various uncertainty measures proposed in the literature. Moreover, some well-defined new open problems for future research also emerge from the introduced framework. |
doi_str_mv | 10.1016/j.ijar.2009.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671296669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X09001753</els_id><sourcerecordid>1671296669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2104e48381a75512644a2fdc622e9cfef38c67b3df8e8dee04faa277f06a2f03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gysiT47NR2EEtV8akilg5sluuchaM0CXaC6L_HVZmZbrj3eU_3EHINtAAK4rYpfGNCwSitCoCCUn5CZqAkz0vJ4ZTMqFIqF8A_zslFjA2lVMhSzcjrG5o4BYxZ77KpsxhG47txn7k-ZH43BLQ-YjaEfmu2vvWjx3iXLbvM_Ph-Z0ZvMzOkrbGfl-TMmTbi1d-ck83jw2b1nK_fn15Wy3VuuZRjzoCWWCquwMjFApgoS8NcbQVjWFmHjisr5JbXTqGqEWnpjGFSOipSjvI5uTnWpqtfE8ZR73y02Lamw36KGoQEVgkhqhRlx6gNfYwBnR6C35mw10D1wZtu9MGbPnjTADp5S9D9EcL0w7fHoKP1mMzUPskYdd37__Bfjfx3hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671296669</pqid></control><display><type>article</type><title>Measures of uncertainty for imprecise probabilities: An axiomatic approach</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bronevich, Andrey ; Klir, George J.</creator><creatorcontrib>Bronevich, Andrey ; Klir, George J.</creatorcontrib><description>The aim of this paper is to formalize, within a broad range of theories of imprecise probabilities, the notion of a total, aggregate measure of uncertainty and its various disaggregations into measures of nonspecificity and conflict. As a framework for facilitating this aim, we introduce a system of well-justified axiomatic requirements for such measures. It is shown that these requirements can be equivalently defined for belief functions and credal sets. Some important consequences are then derived within this framework, which clarify the role of various uncertainty measures proposed in the literature. Moreover, some well-defined new open problems for future research also emerge from the introduced framework.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2009.11.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Aggregates ; Approximation ; Conflict ; Disaggregation ; Equivalence ; Imprecise probabilities ; Nonspecificity ; Reasoning ; Total uncertainty ; Uncertainty ; Uncertainty measures</subject><ispartof>International journal of approximate reasoning, 2010-03, Vol.51 (4), p.365-390</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2104e48381a75512644a2fdc622e9cfef38c67b3df8e8dee04faa277f06a2f03</citedby><cites>FETCH-LOGICAL-c377t-2104e48381a75512644a2fdc622e9cfef38c67b3df8e8dee04faa277f06a2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888613X09001753$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bronevich, Andrey</creatorcontrib><creatorcontrib>Klir, George J.</creatorcontrib><title>Measures of uncertainty for imprecise probabilities: An axiomatic approach</title><title>International journal of approximate reasoning</title><description>The aim of this paper is to formalize, within a broad range of theories of imprecise probabilities, the notion of a total, aggregate measure of uncertainty and its various disaggregations into measures of nonspecificity and conflict. As a framework for facilitating this aim, we introduce a system of well-justified axiomatic requirements for such measures. It is shown that these requirements can be equivalently defined for belief functions and credal sets. Some important consequences are then derived within this framework, which clarify the role of various uncertainty measures proposed in the literature. Moreover, some well-defined new open problems for future research also emerge from the introduced framework.</description><subject>Aggregates</subject><subject>Approximation</subject><subject>Conflict</subject><subject>Disaggregation</subject><subject>Equivalence</subject><subject>Imprecise probabilities</subject><subject>Nonspecificity</subject><subject>Reasoning</subject><subject>Total uncertainty</subject><subject>Uncertainty</subject><subject>Uncertainty measures</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gysiT47NR2EEtV8akilg5sluuchaM0CXaC6L_HVZmZbrj3eU_3EHINtAAK4rYpfGNCwSitCoCCUn5CZqAkz0vJ4ZTMqFIqF8A_zslFjA2lVMhSzcjrG5o4BYxZ77KpsxhG47txn7k-ZH43BLQ-YjaEfmu2vvWjx3iXLbvM_Ph-Z0ZvMzOkrbGfl-TMmTbi1d-ck83jw2b1nK_fn15Wy3VuuZRjzoCWWCquwMjFApgoS8NcbQVjWFmHjisr5JbXTqGqEWnpjGFSOipSjvI5uTnWpqtfE8ZR73y02Lamw36KGoQEVgkhqhRlx6gNfYwBnR6C35mw10D1wZtu9MGbPnjTADp5S9D9EcL0w7fHoKP1mMzUPskYdd37__Bfjfx3hw</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Bronevich, Andrey</creator><creator>Klir, George J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Measures of uncertainty for imprecise probabilities: An axiomatic approach</title><author>Bronevich, Andrey ; Klir, George J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2104e48381a75512644a2fdc622e9cfef38c67b3df8e8dee04faa277f06a2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aggregates</topic><topic>Approximation</topic><topic>Conflict</topic><topic>Disaggregation</topic><topic>Equivalence</topic><topic>Imprecise probabilities</topic><topic>Nonspecificity</topic><topic>Reasoning</topic><topic>Total uncertainty</topic><topic>Uncertainty</topic><topic>Uncertainty measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bronevich, Andrey</creatorcontrib><creatorcontrib>Klir, George J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bronevich, Andrey</au><au>Klir, George J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measures of uncertainty for imprecise probabilities: An axiomatic approach</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>51</volume><issue>4</issue><spage>365</spage><epage>390</epage><pages>365-390</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>The aim of this paper is to formalize, within a broad range of theories of imprecise probabilities, the notion of a total, aggregate measure of uncertainty and its various disaggregations into measures of nonspecificity and conflict. As a framework for facilitating this aim, we introduce a system of well-justified axiomatic requirements for such measures. It is shown that these requirements can be equivalently defined for belief functions and credal sets. Some important consequences are then derived within this framework, which clarify the role of various uncertainty measures proposed in the literature. Moreover, some well-defined new open problems for future research also emerge from the introduced framework.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2009.11.003</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-613X |
ispartof | International journal of approximate reasoning, 2010-03, Vol.51 (4), p.365-390 |
issn | 0888-613X 1873-4731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671296669 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aggregates Approximation Conflict Disaggregation Equivalence Imprecise probabilities Nonspecificity Reasoning Total uncertainty Uncertainty Uncertainty measures |
title | Measures of uncertainty for imprecise probabilities: An axiomatic approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measures%20of%20uncertainty%20for%20imprecise%20probabilities:%20An%20axiomatic%20approach&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Bronevich,%20Andrey&rft.date=2010-03-01&rft.volume=51&rft.issue=4&rft.spage=365&rft.epage=390&rft.pages=365-390&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2009.11.003&rft_dat=%3Cproquest_cross%3E1671296669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671296669&rft_id=info:pmid/&rft_els_id=S0888613X09001753&rfr_iscdi=true |