Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction

Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2009-08, Vol.79 (7), p.846-869
Hauptverfasser: Mayer, Ursula M., Gerstenberger, Axel, Wall, Wolfgang A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 7
container_start_page 846
container_title International journal for numerical methods in engineering
container_volume 79
creator Mayer, Ursula M.
Gerstenberger, Axel
Wall, Wolfgang A.
description Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671296182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671296182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</originalsourceid><addsrcrecordid>eNp1kEFLJDEQhYOs4Kwr-BP6IniJW0mmk-6jyDgr6OxF0VuoSVec7Hanx6Qb13-_PTjoyVPBex8f1GPsVMCFAJA_Y0cXUgMcsJmA2nCQYL6x2VTVvKwrccS-5_wHQIgS1Iz5mzhQ8uio2GBs2hCfC9-nYtgkIt6EjmIOfcS22ITnDSXep4ZS8XS9uOOu77bjgMPU5yLEwrdjaHge0uiGMdEUTWp0u_4HO_TYZjrZ32P2cL24v_rFb38vb64ub7lTWgNfS182ElEZRSWgWisJdU2Eeu68a0ovpAKppHKqMfPSIylT1uDEupKirLQ6Zufv3m3qX0bKg-1CdtS2GKkfsxXaCFlrUclP1KU-50TeblPoML1ZAXY3pZ2mtLspJ_Rsb8XssPUJowv5g5fC1DA3YuL4O_caWnr70mdXd4u9d8-HPNC_Dx7TX6vN9Jl9XC1tJZarCuDeavUftHGRiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671296182</pqid></control><display><type>article</type><title>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</title><source>Access via Wiley Online Library</source><creator>Mayer, Ursula M. ; Gerstenberger, Axel ; Wall, Wolfgang A.</creator><creatorcontrib>Mayer, Ursula M. ; Gerstenberger, Axel ; Wall, Wolfgang A.</creatorcontrib><description>Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2600</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Computational techniques ; constrained Delaunay tetrahedralization ; Curved ; exact numerical integration ; Exact sciences and technology ; Finite element method ; Fluid-structure interaction ; Fundamental areas of phenomenology (including applications) ; interface localization ; Intersections ; Materials handling ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; Solid mechanics ; Structural and continuum mechanics ; surface-surface intersection ; three-dimensional higher-order extended finite element method (XFEM) ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 2009-08, Vol.79 (7), p.846-869</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</citedby><cites>FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2600$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2600$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21790471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, Ursula M.</creatorcontrib><creatorcontrib>Gerstenberger, Axel</creatorcontrib><creatorcontrib>Wall, Wolfgang A.</creatorcontrib><title>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Computational techniques</subject><subject>constrained Delaunay tetrahedralization</subject><subject>Curved</subject><subject>exact numerical integration</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>interface localization</subject><subject>Intersections</subject><subject>Materials handling</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>surface-surface intersection</subject><subject>three-dimensional higher-order extended finite element method (XFEM)</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLJDEQhYOs4Kwr-BP6IniJW0mmk-6jyDgr6OxF0VuoSVec7Hanx6Qb13-_PTjoyVPBex8f1GPsVMCFAJA_Y0cXUgMcsJmA2nCQYL6x2VTVvKwrccS-5_wHQIgS1Iz5mzhQ8uio2GBs2hCfC9-nYtgkIt6EjmIOfcS22ITnDSXep4ZS8XS9uOOu77bjgMPU5yLEwrdjaHge0uiGMdEUTWp0u_4HO_TYZjrZ32P2cL24v_rFb38vb64ub7lTWgNfS182ElEZRSWgWisJdU2Eeu68a0ovpAKppHKqMfPSIylT1uDEupKirLQ6Zufv3m3qX0bKg-1CdtS2GKkfsxXaCFlrUclP1KU-50TeblPoML1ZAXY3pZ2mtLspJ_Rsb8XssPUJowv5g5fC1DA3YuL4O_caWnr70mdXd4u9d8-HPNC_Dx7TX6vN9Jl9XC1tJZarCuDeavUftHGRiw</recordid><startdate>20090813</startdate><enddate>20090813</enddate><creator>Mayer, Ursula M.</creator><creator>Gerstenberger, Axel</creator><creator>Wall, Wolfgang A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090813</creationdate><title>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</title><author>Mayer, Ursula M. ; Gerstenberger, Axel ; Wall, Wolfgang A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Computational techniques</topic><topic>constrained Delaunay tetrahedralization</topic><topic>Curved</topic><topic>exact numerical integration</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>interface localization</topic><topic>Intersections</topic><topic>Materials handling</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>surface-surface intersection</topic><topic>three-dimensional higher-order extended finite element method (XFEM)</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, Ursula M.</creatorcontrib><creatorcontrib>Gerstenberger, Axel</creatorcontrib><creatorcontrib>Wall, Wolfgang A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer, Ursula M.</au><au>Gerstenberger, Axel</au><au>Wall, Wolfgang A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2009-08-13</date><risdate>2009</risdate><volume>79</volume><issue>7</issue><spage>846</spage><epage>869</epage><pages>846-869</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2600</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2009-08, Vol.79 (7), p.846-869
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1671296182
source Access via Wiley Online Library
subjects Algorithms
Computational techniques
constrained Delaunay tetrahedralization
Curved
exact numerical integration
Exact sciences and technology
Finite element method
Fluid-structure interaction
Fundamental areas of phenomenology (including applications)
interface localization
Intersections
Materials handling
Mathematical analysis
Mathematical methods in physics
Mathematical models
Physics
Solid mechanics
Structural and continuum mechanics
surface-surface intersection
three-dimensional higher-order extended finite element method (XFEM)
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T22%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20handling%20for%20three-dimensional%20higher-order%20XFEM-computations%20in%20fluid-structure%20interaction&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mayer,%20Ursula%20M.&rft.date=2009-08-13&rft.volume=79&rft.issue=7&rft.spage=846&rft.epage=869&rft.pages=846-869&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2600&rft_dat=%3Cproquest_cross%3E1671296182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671296182&rft_id=info:pmid/&rfr_iscdi=true