Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction
Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dim...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2009-08, Vol.79 (7), p.846-869 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 7 |
container_start_page | 846 |
container_title | International journal for numerical methods in engineering |
container_volume | 79 |
creator | Mayer, Ursula M. Gerstenberger, Axel Wall, Wolfgang A. |
description | Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration.
The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element.
Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671296182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671296182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</originalsourceid><addsrcrecordid>eNp1kEFLJDEQhYOs4Kwr-BP6IniJW0mmk-6jyDgr6OxF0VuoSVec7Hanx6Qb13-_PTjoyVPBex8f1GPsVMCFAJA_Y0cXUgMcsJmA2nCQYL6x2VTVvKwrccS-5_wHQIgS1Iz5mzhQ8uio2GBs2hCfC9-nYtgkIt6EjmIOfcS22ITnDSXep4ZS8XS9uOOu77bjgMPU5yLEwrdjaHge0uiGMdEUTWp0u_4HO_TYZjrZ32P2cL24v_rFb38vb64ub7lTWgNfS182ElEZRSWgWisJdU2Eeu68a0ovpAKppHKqMfPSIylT1uDEupKirLQ6Zufv3m3qX0bKg-1CdtS2GKkfsxXaCFlrUclP1KU-50TeblPoML1ZAXY3pZ2mtLspJ_Rsb8XssPUJowv5g5fC1DA3YuL4O_caWnr70mdXd4u9d8-HPNC_Dx7TX6vN9Jl9XC1tJZarCuDeavUftHGRiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671296182</pqid></control><display><type>article</type><title>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</title><source>Access via Wiley Online Library</source><creator>Mayer, Ursula M. ; Gerstenberger, Axel ; Wall, Wolfgang A.</creator><creatorcontrib>Mayer, Ursula M. ; Gerstenberger, Axel ; Wall, Wolfgang A.</creatorcontrib><description>Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration.
The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element.
Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2600</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Computational techniques ; constrained Delaunay tetrahedralization ; Curved ; exact numerical integration ; Exact sciences and technology ; Finite element method ; Fluid-structure interaction ; Fundamental areas of phenomenology (including applications) ; interface localization ; Intersections ; Materials handling ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; Solid mechanics ; Structural and continuum mechanics ; surface-surface intersection ; three-dimensional higher-order extended finite element method (XFEM) ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 2009-08, Vol.79 (7), p.846-869</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</citedby><cites>FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2600$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2600$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21790471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, Ursula M.</creatorcontrib><creatorcontrib>Gerstenberger, Axel</creatorcontrib><creatorcontrib>Wall, Wolfgang A.</creatorcontrib><title>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration.
The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element.
Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Computational techniques</subject><subject>constrained Delaunay tetrahedralization</subject><subject>Curved</subject><subject>exact numerical integration</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>interface localization</subject><subject>Intersections</subject><subject>Materials handling</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>surface-surface intersection</subject><subject>three-dimensional higher-order extended finite element method (XFEM)</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLJDEQhYOs4Kwr-BP6IniJW0mmk-6jyDgr6OxF0VuoSVec7Hanx6Qb13-_PTjoyVPBex8f1GPsVMCFAJA_Y0cXUgMcsJmA2nCQYL6x2VTVvKwrccS-5_wHQIgS1Iz5mzhQ8uio2GBs2hCfC9-nYtgkIt6EjmIOfcS22ITnDSXep4ZS8XS9uOOu77bjgMPU5yLEwrdjaHge0uiGMdEUTWp0u_4HO_TYZjrZ32P2cL24v_rFb38vb64ub7lTWgNfS182ElEZRSWgWisJdU2Eeu68a0ovpAKppHKqMfPSIylT1uDEupKirLQ6Zufv3m3qX0bKg-1CdtS2GKkfsxXaCFlrUclP1KU-50TeblPoML1ZAXY3pZ2mtLspJ_Rsb8XssPUJowv5g5fC1DA3YuL4O_caWnr70mdXd4u9d8-HPNC_Dx7TX6vN9Jl9XC1tJZarCuDeavUftHGRiw</recordid><startdate>20090813</startdate><enddate>20090813</enddate><creator>Mayer, Ursula M.</creator><creator>Gerstenberger, Axel</creator><creator>Wall, Wolfgang A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090813</creationdate><title>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</title><author>Mayer, Ursula M. ; Gerstenberger, Axel ; Wall, Wolfgang A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3660-b2f5d2aa373e50a3b32099eea64cfcd5f12302323c3d745fae37590c1b8215863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Computational techniques</topic><topic>constrained Delaunay tetrahedralization</topic><topic>Curved</topic><topic>exact numerical integration</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>interface localization</topic><topic>Intersections</topic><topic>Materials handling</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>surface-surface intersection</topic><topic>three-dimensional higher-order extended finite element method (XFEM)</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, Ursula M.</creatorcontrib><creatorcontrib>Gerstenberger, Axel</creatorcontrib><creatorcontrib>Wall, Wolfgang A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer, Ursula M.</au><au>Gerstenberger, Axel</au><au>Wall, Wolfgang A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2009-08-13</date><risdate>2009</risdate><volume>79</volume><issue>7</issue><spage>846</spage><epage>869</epage><pages>846-869</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration.
The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element.
Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2600</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2009-08, Vol.79 (7), p.846-869 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671296182 |
source | Access via Wiley Online Library |
subjects | Algorithms Computational techniques constrained Delaunay tetrahedralization Curved exact numerical integration Exact sciences and technology Finite element method Fluid-structure interaction Fundamental areas of phenomenology (including applications) interface localization Intersections Materials handling Mathematical analysis Mathematical methods in physics Mathematical models Physics Solid mechanics Structural and continuum mechanics surface-surface intersection three-dimensional higher-order extended finite element method (XFEM) Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T19%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20handling%20for%20three-dimensional%20higher-order%20XFEM-computations%20in%20fluid-structure%20interaction&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mayer,%20Ursula%20M.&rft.date=2009-08-13&rft.volume=79&rft.issue=7&rft.spage=846&rft.epage=869&rft.pages=846-869&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2600&rft_dat=%3Cproquest_cross%3E1671296182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671296182&rft_id=info:pmid/&rfr_iscdi=true |