Development of a fuzzy saturation index for sulfate scale prediction
An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentrat...
Gespeichert in:
Veröffentlicht in: | Journal of petroleum science & engineering 2010-03, Vol.71 (1), p.13-18 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Journal of petroleum science & engineering |
container_volume | 71 |
creator | Khatami, H.R. Ranjbar, M. Schaffie, M. Emady, M.A. |
description | An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action. |
doi_str_mv | 10.1016/j.petrol.2009.12.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671295906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920410509002757</els_id><sourcerecordid>1671295906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwDxi8ILEkPNuJkyxIqOVLqsQCs-U6z5KrNA52UtH-ehKKGJnect69uoeQawYpAybvNmmHffBNygGqlPEUQJ6QGSsLkWQFy0_JDCoOScYgPycXMW4AQEhRzMhyiTtsfLfFtqfeUk3tcDjsadT9EHTvfEtdW-MXtT7QODRW90ij0Q3SLmDtzIRckjOrm4hXv3dOPp4e3xcvyert-XXxsEqMkFWfIBYSrODSaIZZietKCJRWSA08y2UtWZ1bm5us5Pma1ZUVoMu6qEFbjVWxFnNye8ztgv8cMPZq66LBptEt-iEqJgvGq7wCOaLZETXBxxjQqi64rQ57xUBN0tRGHaWpSZpiXMHP281vg55G2qBb4-LfL-djuBDlyN0fORzn7hwGFY3D1oxGAppe1d79X_QN5oSFNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671295906</pqid></control><display><type>article</type><title>Development of a fuzzy saturation index for sulfate scale prediction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Khatami, H.R. ; Ranjbar, M. ; Schaffie, M. ; Emady, M.A.</creator><creatorcontrib>Khatami, H.R. ; Ranjbar, M. ; Schaffie, M. ; Emady, M.A.</creatorcontrib><description>An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.</description><identifier>ISSN: 0920-4105</identifier><identifier>EISSN: 1873-4715</identifier><identifier>DOI: 10.1016/j.petrol.2009.12.006</identifier><identifier>CODEN: JPSEE6</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Crude oil, natural gas and petroleum products ; Crude oil, natural gas, oil shales producing equipements and methods ; Energy ; Enhanced oil recovery ; Enhanced oil recovery methods ; Exact sciences and technology ; Fuels ; Fuzzy ; Fuzzy logic ; fuzzy numbers ; Fuzzy set theory ; Fuzzy systems ; Mathematical models ; Prospecting and production of crude oil, natural gas, oil shales and tar sands ; Saturation ; scale prediction ; Sulfates ; uncertainty ; water flooding</subject><ispartof>Journal of petroleum science & engineering, 2010-03, Vol.71 (1), p.13-18</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</citedby><cites>FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.petrol.2009.12.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22590338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatami, H.R.</creatorcontrib><creatorcontrib>Ranjbar, M.</creatorcontrib><creatorcontrib>Schaffie, M.</creatorcontrib><creatorcontrib>Emady, M.A.</creatorcontrib><title>Development of a fuzzy saturation index for sulfate scale prediction</title><title>Journal of petroleum science & engineering</title><description>An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.</description><subject>Applied sciences</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Crude oil, natural gas, oil shales producing equipements and methods</subject><subject>Energy</subject><subject>Enhanced oil recovery</subject><subject>Enhanced oil recovery methods</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>fuzzy numbers</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Mathematical models</subject><subject>Prospecting and production of crude oil, natural gas, oil shales and tar sands</subject><subject>Saturation</subject><subject>scale prediction</subject><subject>Sulfates</subject><subject>uncertainty</subject><subject>water flooding</subject><issn>0920-4105</issn><issn>1873-4715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwDxi8ILEkPNuJkyxIqOVLqsQCs-U6z5KrNA52UtH-ehKKGJnect69uoeQawYpAybvNmmHffBNygGqlPEUQJ6QGSsLkWQFy0_JDCoOScYgPycXMW4AQEhRzMhyiTtsfLfFtqfeUk3tcDjsadT9EHTvfEtdW-MXtT7QODRW90ij0Q3SLmDtzIRckjOrm4hXv3dOPp4e3xcvyert-XXxsEqMkFWfIBYSrODSaIZZietKCJRWSA08y2UtWZ1bm5us5Pma1ZUVoMu6qEFbjVWxFnNye8ztgv8cMPZq66LBptEt-iEqJgvGq7wCOaLZETXBxxjQqi64rQ57xUBN0tRGHaWpSZpiXMHP281vg55G2qBb4-LfL-djuBDlyN0fORzn7hwGFY3D1oxGAppe1d79X_QN5oSFNQ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Khatami, H.R.</creator><creator>Ranjbar, M.</creator><creator>Schaffie, M.</creator><creator>Emady, M.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100301</creationdate><title>Development of a fuzzy saturation index for sulfate scale prediction</title><author>Khatami, H.R. ; Ranjbar, M. ; Schaffie, M. ; Emady, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Crude oil, natural gas, oil shales producing equipements and methods</topic><topic>Energy</topic><topic>Enhanced oil recovery</topic><topic>Enhanced oil recovery methods</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>fuzzy numbers</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Mathematical models</topic><topic>Prospecting and production of crude oil, natural gas, oil shales and tar sands</topic><topic>Saturation</topic><topic>scale prediction</topic><topic>Sulfates</topic><topic>uncertainty</topic><topic>water flooding</topic><toplevel>online_resources</toplevel><creatorcontrib>Khatami, H.R.</creatorcontrib><creatorcontrib>Ranjbar, M.</creatorcontrib><creatorcontrib>Schaffie, M.</creatorcontrib><creatorcontrib>Emady, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of petroleum science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, H.R.</au><au>Ranjbar, M.</au><au>Schaffie, M.</au><au>Emady, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a fuzzy saturation index for sulfate scale prediction</atitle><jtitle>Journal of petroleum science & engineering</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>71</volume><issue>1</issue><spage>13</spage><epage>18</epage><pages>13-18</pages><issn>0920-4105</issn><eissn>1873-4715</eissn><coden>JPSEE6</coden><abstract>An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.petrol.2009.12.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4105 |
ispartof | Journal of petroleum science & engineering, 2010-03, Vol.71 (1), p.13-18 |
issn | 0920-4105 1873-4715 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671295906 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Crude oil, natural gas and petroleum products Crude oil, natural gas, oil shales producing equipements and methods Energy Enhanced oil recovery Enhanced oil recovery methods Exact sciences and technology Fuels Fuzzy Fuzzy logic fuzzy numbers Fuzzy set theory Fuzzy systems Mathematical models Prospecting and production of crude oil, natural gas, oil shales and tar sands Saturation scale prediction Sulfates uncertainty water flooding |
title | Development of a fuzzy saturation index for sulfate scale prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20fuzzy%20saturation%20index%20for%20sulfate%20scale%20prediction&rft.jtitle=Journal%20of%20petroleum%20science%20&%20engineering&rft.au=Khatami,%20H.R.&rft.date=2010-03-01&rft.volume=71&rft.issue=1&rft.spage=13&rft.epage=18&rft.pages=13-18&rft.issn=0920-4105&rft.eissn=1873-4715&rft.coden=JPSEE6&rft_id=info:doi/10.1016/j.petrol.2009.12.006&rft_dat=%3Cproquest_cross%3E1671295906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671295906&rft_id=info:pmid/&rft_els_id=S0920410509002757&rfr_iscdi=true |