Development of a fuzzy saturation index for sulfate scale prediction

An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of petroleum science & engineering 2010-03, Vol.71 (1), p.13-18
Hauptverfasser: Khatami, H.R., Ranjbar, M., Schaffie, M., Emady, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 13
container_title Journal of petroleum science & engineering
container_volume 71
creator Khatami, H.R.
Ranjbar, M.
Schaffie, M.
Emady, M.A.
description An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.
doi_str_mv 10.1016/j.petrol.2009.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671295906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920410509002757</els_id><sourcerecordid>1671295906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwDxi8ILEkPNuJkyxIqOVLqsQCs-U6z5KrNA52UtH-ehKKGJnect69uoeQawYpAybvNmmHffBNygGqlPEUQJ6QGSsLkWQFy0_JDCoOScYgPycXMW4AQEhRzMhyiTtsfLfFtqfeUk3tcDjsadT9EHTvfEtdW-MXtT7QODRW90ij0Q3SLmDtzIRckjOrm4hXv3dOPp4e3xcvyert-XXxsEqMkFWfIBYSrODSaIZZietKCJRWSA08y2UtWZ1bm5us5Pma1ZUVoMu6qEFbjVWxFnNye8ztgv8cMPZq66LBptEt-iEqJgvGq7wCOaLZETXBxxjQqi64rQ57xUBN0tRGHaWpSZpiXMHP281vg55G2qBb4-LfL-djuBDlyN0fORzn7hwGFY3D1oxGAppe1d79X_QN5oSFNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671295906</pqid></control><display><type>article</type><title>Development of a fuzzy saturation index for sulfate scale prediction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Khatami, H.R. ; Ranjbar, M. ; Schaffie, M. ; Emady, M.A.</creator><creatorcontrib>Khatami, H.R. ; Ranjbar, M. ; Schaffie, M. ; Emady, M.A.</creatorcontrib><description>An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.</description><identifier>ISSN: 0920-4105</identifier><identifier>EISSN: 1873-4715</identifier><identifier>DOI: 10.1016/j.petrol.2009.12.006</identifier><identifier>CODEN: JPSEE6</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Crude oil, natural gas and petroleum products ; Crude oil, natural gas, oil shales producing equipements and methods ; Energy ; Enhanced oil recovery ; Enhanced oil recovery methods ; Exact sciences and technology ; Fuels ; Fuzzy ; Fuzzy logic ; fuzzy numbers ; Fuzzy set theory ; Fuzzy systems ; Mathematical models ; Prospecting and production of crude oil, natural gas, oil shales and tar sands ; Saturation ; scale prediction ; Sulfates ; uncertainty ; water flooding</subject><ispartof>Journal of petroleum science &amp; engineering, 2010-03, Vol.71 (1), p.13-18</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</citedby><cites>FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.petrol.2009.12.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22590338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatami, H.R.</creatorcontrib><creatorcontrib>Ranjbar, M.</creatorcontrib><creatorcontrib>Schaffie, M.</creatorcontrib><creatorcontrib>Emady, M.A.</creatorcontrib><title>Development of a fuzzy saturation index for sulfate scale prediction</title><title>Journal of petroleum science &amp; engineering</title><description>An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.</description><subject>Applied sciences</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Crude oil, natural gas, oil shales producing equipements and methods</subject><subject>Energy</subject><subject>Enhanced oil recovery</subject><subject>Enhanced oil recovery methods</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>fuzzy numbers</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Mathematical models</subject><subject>Prospecting and production of crude oil, natural gas, oil shales and tar sands</subject><subject>Saturation</subject><subject>scale prediction</subject><subject>Sulfates</subject><subject>uncertainty</subject><subject>water flooding</subject><issn>0920-4105</issn><issn>1873-4715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwDxi8ILEkPNuJkyxIqOVLqsQCs-U6z5KrNA52UtH-ehKKGJnect69uoeQawYpAybvNmmHffBNygGqlPEUQJ6QGSsLkWQFy0_JDCoOScYgPycXMW4AQEhRzMhyiTtsfLfFtqfeUk3tcDjsadT9EHTvfEtdW-MXtT7QODRW90ij0Q3SLmDtzIRckjOrm4hXv3dOPp4e3xcvyert-XXxsEqMkFWfIBYSrODSaIZZietKCJRWSA08y2UtWZ1bm5us5Pma1ZUVoMu6qEFbjVWxFnNye8ztgv8cMPZq66LBptEt-iEqJgvGq7wCOaLZETXBxxjQqi64rQ57xUBN0tRGHaWpSZpiXMHP281vg55G2qBb4-LfL-djuBDlyN0fORzn7hwGFY3D1oxGAppe1d79X_QN5oSFNQ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Khatami, H.R.</creator><creator>Ranjbar, M.</creator><creator>Schaffie, M.</creator><creator>Emady, M.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100301</creationdate><title>Development of a fuzzy saturation index for sulfate scale prediction</title><author>Khatami, H.R. ; Ranjbar, M. ; Schaffie, M. ; Emady, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-ee760f326ca1e48eb933e6f36a02456d61d5ff5c4825b1d9f30a8d7d0afae97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Crude oil, natural gas, oil shales producing equipements and methods</topic><topic>Energy</topic><topic>Enhanced oil recovery</topic><topic>Enhanced oil recovery methods</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>fuzzy numbers</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Mathematical models</topic><topic>Prospecting and production of crude oil, natural gas, oil shales and tar sands</topic><topic>Saturation</topic><topic>scale prediction</topic><topic>Sulfates</topic><topic>uncertainty</topic><topic>water flooding</topic><toplevel>online_resources</toplevel><creatorcontrib>Khatami, H.R.</creatorcontrib><creatorcontrib>Ranjbar, M.</creatorcontrib><creatorcontrib>Schaffie, M.</creatorcontrib><creatorcontrib>Emady, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of petroleum science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatami, H.R.</au><au>Ranjbar, M.</au><au>Schaffie, M.</au><au>Emady, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a fuzzy saturation index for sulfate scale prediction</atitle><jtitle>Journal of petroleum science &amp; engineering</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>71</volume><issue>1</issue><spage>13</spage><epage>18</epage><pages>13-18</pages><issn>0920-4105</issn><eissn>1873-4715</eissn><coden>JPSEE6</coden><abstract>An innovative approach established upon the concepts of fuzzy numbers and their processing system was developed to address the risk of sulfate deposition due to seawater injection as an enhanced oil recovery option. Uncertain parameters such as solubility product constant and free sulfate concentration are considered as fuzzy numbers. Appropriate modeling steps were performed with these fuzzy numbers to suggest a fuzzy saturation index. As a case study, anhydrite scaling tendency due to injection of Persian Gulf water into a selected well from Parsi field, southwestern Iran, is investigated via the proposed fuzzy saturation index. The proposed fuzzy approach provides a strict mathematical environment in which vague conceptual phenomena in scale prediction problem can rigorously be studied. It is able to deliver the maximum possible saturation index value and the whole set of possible values for the problem solution, preparing a wider perspective for the oilfield operator over the scale problem and the corresponding suitable prevention action.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.petrol.2009.12.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-4105
ispartof Journal of petroleum science & engineering, 2010-03, Vol.71 (1), p.13-18
issn 0920-4105
1873-4715
language eng
recordid cdi_proquest_miscellaneous_1671295906
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Crude oil, natural gas and petroleum products
Crude oil, natural gas, oil shales producing equipements and methods
Energy
Enhanced oil recovery
Enhanced oil recovery methods
Exact sciences and technology
Fuels
Fuzzy
Fuzzy logic
fuzzy numbers
Fuzzy set theory
Fuzzy systems
Mathematical models
Prospecting and production of crude oil, natural gas, oil shales and tar sands
Saturation
scale prediction
Sulfates
uncertainty
water flooding
title Development of a fuzzy saturation index for sulfate scale prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20fuzzy%20saturation%20index%20for%20sulfate%20scale%20prediction&rft.jtitle=Journal%20of%20petroleum%20science%20&%20engineering&rft.au=Khatami,%20H.R.&rft.date=2010-03-01&rft.volume=71&rft.issue=1&rft.spage=13&rft.epage=18&rft.pages=13-18&rft.issn=0920-4105&rft.eissn=1873-4715&rft.coden=JPSEE6&rft_id=info:doi/10.1016/j.petrol.2009.12.006&rft_dat=%3Cproquest_cross%3E1671295906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671295906&rft_id=info:pmid/&rft_els_id=S0920410509002757&rfr_iscdi=true