Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A
► Increase of the volume fraction of γ′ improved room temperature tensile strength. ► Precipitate of η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1 1 1} planes at the γ′/ γ interface was distorted by a/3 〈1 1 1〉 dislocation. ► The Cr 23C 6 had an orientation relation...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011-12, Vol.530, p.315-326 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | |
container_start_page | 315 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 530 |
creator | Xu, Yulai Yang, Caixiong Xiao, Xueshan Cao, Xiuli Jia, Guoqing Shen, Zhi |
description | ► Increase of the volume fraction of
γ′ improved room temperature tensile strength. ► Precipitate of
η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1
1
1} planes at the
γ′/
γ interface was distorted by a/3 〈1
1
1〉 dislocation. ► The Cr
23C
6 had an orientation relationship with
γ′/
γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of
γ′ phase.
Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750
°C/310
MPa. After full heat treatment, the precipitate changed from
γ′ phase to
γ′
+
η phases, the volume fraction of
γ′ phase, lattice misfit of
γ′/
γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1
1
1} atomic planes in the
γ′/
γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1
1
1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic
η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr
23C
6 carbide exhibited an orientation relationship with the
γ′ and
γ phases, the spherical morphology of
γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of
γ′ phase was schematically suggested. |
doi_str_mv | 10.1016/j.msea.2011.09.091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671293695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311010628</els_id><sourcerecordid>1671293695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</originalsourceid><addsrcrecordid>eNp9kDtLBDEQgIMoeJ7-Aas0gs2ek2QfF7AR8QWijVYWIZtMMMfu5kx2Bf-9We6wFAammG9eHyHnDFYMWH21WfUJ9YoDYyuQOdgBWbB1I4pSivqQLEByVlQgxTE5SWkDAKyEakE-7r5DN40-DDQ42nsTQxrjZMYpItWDpT2aTz14ozu6jWGLcfSYZvbN0z5Y7zxamqZc0F0XfuiL70PG6RpuTsmR013Cs31ekvf7u7fbx-L59eHp9ua5MKIWYyFNY0G7tXatcYLbVlpXlQ1wweXaNGXZyLriaLjjApwUjZasbK1uwVpsGxRLcrmbmw_8mjCNqvfJYNfpAcOUFKsbxrMGWWWU79D5zxTRqW30vY4_ioGaTaqNmk2q2aQCmYPlpov9fJ2yBxf1YHz66-QVr0pZisxd7zjMz357jCoZj4NB6yOaUdng_1vzCxi0iuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671293695</pqid></control><display><type>article</type><title>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Yulai ; Yang, Caixiong ; Xiao, Xueshan ; Cao, Xiuli ; Jia, Guoqing ; Shen, Zhi</creator><creatorcontrib>Xu, Yulai ; Yang, Caixiong ; Xiao, Xueshan ; Cao, Xiuli ; Jia, Guoqing ; Shen, Zhi</creatorcontrib><description>► Increase of the volume fraction of
γ′ improved room temperature tensile strength. ► Precipitate of
η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1
1
1} planes at the
γ′/
γ interface was distorted by a/3 〈1
1
1〉 dislocation. ► The Cr
23C
6 had an orientation relationship with
γ′/
γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of
γ′ phase.
Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750
°C/310
MPa. After full heat treatment, the precipitate changed from
γ′ phase to
γ′
+
η phases, the volume fraction of
γ′ phase, lattice misfit of
γ′/
γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1
1
1} atomic planes in the
γ′/
γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1
1
1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic
η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr
23C
6 carbide exhibited an orientation relationship with the
γ′ and
γ phases, the spherical morphology of
γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of
γ′ phase was schematically suggested.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.09.091</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Elasticity. Plasticity ; Exact sciences and technology ; Fractures ; Lattice misfit ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical property ; Metals. Metallurgy ; Microstructure ; Morphology ; Nickel base alloys ; Nickel based superalloy ; Nimonic 80A ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase transformations ; Physics ; Precipitates ; Precipitation ; Scanning electron microscopy ; Superalloys ; Titanium</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-12, Vol.530, p.315-326</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</citedby><cites>FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2011.09.091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25254943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yulai</creatorcontrib><creatorcontrib>Yang, Caixiong</creatorcontrib><creatorcontrib>Xiao, Xueshan</creatorcontrib><creatorcontrib>Cao, Xiuli</creatorcontrib><creatorcontrib>Jia, Guoqing</creatorcontrib><creatorcontrib>Shen, Zhi</creatorcontrib><title>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>► Increase of the volume fraction of
γ′ improved room temperature tensile strength. ► Precipitate of
η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1
1
1} planes at the
γ′/
γ interface was distorted by a/3 〈1
1
1〉 dislocation. ► The Cr
23C
6 had an orientation relationship with
γ′/
γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of
γ′ phase.
Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750
°C/310
MPa. After full heat treatment, the precipitate changed from
γ′ phase to
γ′
+
η phases, the volume fraction of
γ′ phase, lattice misfit of
γ′/
γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1
1
1} atomic planes in the
γ′/
γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1
1
1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic
η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr
23C
6 carbide exhibited an orientation relationship with the
γ′ and
γ phases, the spherical morphology of
γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of
γ′ phase was schematically suggested.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Fractures</subject><subject>Lattice misfit</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical property</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nickel base alloys</subject><subject>Nickel based superalloy</subject><subject>Nimonic 80A</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Scanning electron microscopy</subject><subject>Superalloys</subject><subject>Titanium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtLBDEQgIMoeJ7-Aas0gs2ek2QfF7AR8QWijVYWIZtMMMfu5kx2Bf-9We6wFAammG9eHyHnDFYMWH21WfUJ9YoDYyuQOdgBWbB1I4pSivqQLEByVlQgxTE5SWkDAKyEakE-7r5DN40-DDQ42nsTQxrjZMYpItWDpT2aTz14ozu6jWGLcfSYZvbN0z5Y7zxamqZc0F0XfuiL70PG6RpuTsmR013Cs31ekvf7u7fbx-L59eHp9ua5MKIWYyFNY0G7tXatcYLbVlpXlQ1wweXaNGXZyLriaLjjApwUjZasbK1uwVpsGxRLcrmbmw_8mjCNqvfJYNfpAcOUFKsbxrMGWWWU79D5zxTRqW30vY4_ioGaTaqNmk2q2aQCmYPlpov9fJ2yBxf1YHz66-QVr0pZisxd7zjMz357jCoZj4NB6yOaUdng_1vzCxi0iuE</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Xu, Yulai</creator><creator>Yang, Caixiong</creator><creator>Xiao, Xueshan</creator><creator>Cao, Xiuli</creator><creator>Jia, Guoqing</creator><creator>Shen, Zhi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111215</creationdate><title>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</title><author>Xu, Yulai ; Yang, Caixiong ; Xiao, Xueshan ; Cao, Xiuli ; Jia, Guoqing ; Shen, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Fractures</topic><topic>Lattice misfit</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical property</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nickel base alloys</topic><topic>Nickel based superalloy</topic><topic>Nimonic 80A</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Scanning electron microscopy</topic><topic>Superalloys</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yulai</creatorcontrib><creatorcontrib>Yang, Caixiong</creatorcontrib><creatorcontrib>Xiao, Xueshan</creatorcontrib><creatorcontrib>Cao, Xiuli</creatorcontrib><creatorcontrib>Jia, Guoqing</creatorcontrib><creatorcontrib>Shen, Zhi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yulai</au><au>Yang, Caixiong</au><au>Xiao, Xueshan</au><au>Cao, Xiuli</au><au>Jia, Guoqing</au><au>Shen, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>530</volume><spage>315</spage><epage>326</epage><pages>315-326</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► Increase of the volume fraction of
γ′ improved room temperature tensile strength. ► Precipitate of
η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1
1
1} planes at the
γ′/
γ interface was distorted by a/3 〈1
1
1〉 dislocation. ► The Cr
23C
6 had an orientation relationship with
γ′/
γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of
γ′ phase.
Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750
°C/310
MPa. After full heat treatment, the precipitate changed from
γ′ phase to
γ′
+
η phases, the volume fraction of
γ′ phase, lattice misfit of
γ′/
γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1
1
1} atomic planes in the
γ′/
γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1
1
1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic
η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr
23C
6 carbide exhibited an orientation relationship with the
γ′ and
γ phases, the spherical morphology of
γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of
γ′ phase was schematically suggested.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.09.091</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-12, Vol.530, p.315-326 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671293695 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Elasticity. Plasticity Exact sciences and technology Fractures Lattice misfit Materials science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanical property Metals. Metallurgy Microstructure Morphology Nickel base alloys Nickel based superalloy Nimonic 80A Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Phase transformations Physics Precipitates Precipitation Scanning electron microscopy Superalloys Titanium |
title | Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20microstructure%20and%20mechanical%20properties%20of%20Ti%20modified%20superalloy%20Nimonic%2080A&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xu,%20Yulai&rft.date=2011-12-15&rft.volume=530&rft.spage=315&rft.epage=326&rft.pages=315-326&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.09.091&rft_dat=%3Cproquest_cross%3E1671293695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671293695&rft_id=info:pmid/&rft_els_id=S0921509311010628&rfr_iscdi=true |