Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A

► Increase of the volume fraction of γ′ improved room temperature tensile strength. ► Precipitate of η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1 1 1} planes at the γ′/ γ interface was distorted by a/3 〈1 1 1〉 dislocation. ► The Cr 23C 6 had an orientation relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011-12, Vol.530, p.315-326
Hauptverfasser: Xu, Yulai, Yang, Caixiong, Xiao, Xueshan, Cao, Xiuli, Jia, Guoqing, Shen, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue
container_start_page 315
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 530
creator Xu, Yulai
Yang, Caixiong
Xiao, Xueshan
Cao, Xiuli
Jia, Guoqing
Shen, Zhi
description ► Increase of the volume fraction of γ′ improved room temperature tensile strength. ► Precipitate of η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1 1 1} planes at the γ′/ γ interface was distorted by a/3 〈1 1 1〉 dislocation. ► The Cr 23C 6 had an orientation relationship with γ′/ γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of γ′ phase. Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750 °C/310 MPa. After full heat treatment, the precipitate changed from γ′ phase to γ′ + η phases, the volume fraction of γ′ phase, lattice misfit of γ′/ γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1 1 1} atomic planes in the γ′/ γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1 1 1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr 23C 6 carbide exhibited an orientation relationship with the γ′ and γ phases, the spherical morphology of γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of γ′ phase was schematically suggested.
doi_str_mv 10.1016/j.msea.2011.09.091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671293695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311010628</els_id><sourcerecordid>1671293695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</originalsourceid><addsrcrecordid>eNp9kDtLBDEQgIMoeJ7-Aas0gs2ek2QfF7AR8QWijVYWIZtMMMfu5kx2Bf-9We6wFAammG9eHyHnDFYMWH21WfUJ9YoDYyuQOdgBWbB1I4pSivqQLEByVlQgxTE5SWkDAKyEakE-7r5DN40-DDQ42nsTQxrjZMYpItWDpT2aTz14ozu6jWGLcfSYZvbN0z5Y7zxamqZc0F0XfuiL70PG6RpuTsmR013Cs31ekvf7u7fbx-L59eHp9ua5MKIWYyFNY0G7tXatcYLbVlpXlQ1wweXaNGXZyLriaLjjApwUjZasbK1uwVpsGxRLcrmbmw_8mjCNqvfJYNfpAcOUFKsbxrMGWWWU79D5zxTRqW30vY4_ioGaTaqNmk2q2aQCmYPlpov9fJ2yBxf1YHz66-QVr0pZisxd7zjMz357jCoZj4NB6yOaUdng_1vzCxi0iuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671293695</pqid></control><display><type>article</type><title>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Yulai ; Yang, Caixiong ; Xiao, Xueshan ; Cao, Xiuli ; Jia, Guoqing ; Shen, Zhi</creator><creatorcontrib>Xu, Yulai ; Yang, Caixiong ; Xiao, Xueshan ; Cao, Xiuli ; Jia, Guoqing ; Shen, Zhi</creatorcontrib><description>► Increase of the volume fraction of γ′ improved room temperature tensile strength. ► Precipitate of η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1 1 1} planes at the γ′/ γ interface was distorted by a/3 〈1 1 1〉 dislocation. ► The Cr 23C 6 had an orientation relationship with γ′/ γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of γ′ phase. Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750 °C/310 MPa. After full heat treatment, the precipitate changed from γ′ phase to γ′ + η phases, the volume fraction of γ′ phase, lattice misfit of γ′/ γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1 1 1} atomic planes in the γ′/ γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1 1 1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr 23C 6 carbide exhibited an orientation relationship with the γ′ and γ phases, the spherical morphology of γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of γ′ phase was schematically suggested.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.09.091</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Elasticity. Plasticity ; Exact sciences and technology ; Fractures ; Lattice misfit ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical property ; Metals. Metallurgy ; Microstructure ; Morphology ; Nickel base alloys ; Nickel based superalloy ; Nimonic 80A ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase transformations ; Physics ; Precipitates ; Precipitation ; Scanning electron microscopy ; Superalloys ; Titanium</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2011-12, Vol.530, p.315-326</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</citedby><cites>FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2011.09.091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25254943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yulai</creatorcontrib><creatorcontrib>Yang, Caixiong</creatorcontrib><creatorcontrib>Xiao, Xueshan</creatorcontrib><creatorcontrib>Cao, Xiuli</creatorcontrib><creatorcontrib>Jia, Guoqing</creatorcontrib><creatorcontrib>Shen, Zhi</creatorcontrib><title>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>► Increase of the volume fraction of γ′ improved room temperature tensile strength. ► Precipitate of η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1 1 1} planes at the γ′/ γ interface was distorted by a/3 〈1 1 1〉 dislocation. ► The Cr 23C 6 had an orientation relationship with γ′/ γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of γ′ phase. Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750 °C/310 MPa. After full heat treatment, the precipitate changed from γ′ phase to γ′ + η phases, the volume fraction of γ′ phase, lattice misfit of γ′/ γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1 1 1} atomic planes in the γ′/ γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1 1 1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr 23C 6 carbide exhibited an orientation relationship with the γ′ and γ phases, the spherical morphology of γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of γ′ phase was schematically suggested.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Fractures</subject><subject>Lattice misfit</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical property</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nickel base alloys</subject><subject>Nickel based superalloy</subject><subject>Nimonic 80A</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Scanning electron microscopy</subject><subject>Superalloys</subject><subject>Titanium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtLBDEQgIMoeJ7-Aas0gs2ek2QfF7AR8QWijVYWIZtMMMfu5kx2Bf-9We6wFAammG9eHyHnDFYMWH21WfUJ9YoDYyuQOdgBWbB1I4pSivqQLEByVlQgxTE5SWkDAKyEakE-7r5DN40-DDQ42nsTQxrjZMYpItWDpT2aTz14ozu6jWGLcfSYZvbN0z5Y7zxamqZc0F0XfuiL70PG6RpuTsmR013Cs31ekvf7u7fbx-L59eHp9ua5MKIWYyFNY0G7tXatcYLbVlpXlQ1wweXaNGXZyLriaLjjApwUjZasbK1uwVpsGxRLcrmbmw_8mjCNqvfJYNfpAcOUFKsbxrMGWWWU79D5zxTRqW30vY4_ioGaTaqNmk2q2aQCmYPlpov9fJ2yBxf1YHz66-QVr0pZisxd7zjMz357jCoZj4NB6yOaUdng_1vzCxi0iuE</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Xu, Yulai</creator><creator>Yang, Caixiong</creator><creator>Xiao, Xueshan</creator><creator>Cao, Xiuli</creator><creator>Jia, Guoqing</creator><creator>Shen, Zhi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111215</creationdate><title>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</title><author>Xu, Yulai ; Yang, Caixiong ; Xiao, Xueshan ; Cao, Xiuli ; Jia, Guoqing ; Shen, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9c7d0af8afbcf32db9df547023298c74479652ec2f230f937a914bdab0ddeb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Fractures</topic><topic>Lattice misfit</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical property</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nickel base alloys</topic><topic>Nickel based superalloy</topic><topic>Nimonic 80A</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Scanning electron microscopy</topic><topic>Superalloys</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yulai</creatorcontrib><creatorcontrib>Yang, Caixiong</creatorcontrib><creatorcontrib>Xiao, Xueshan</creatorcontrib><creatorcontrib>Cao, Xiuli</creatorcontrib><creatorcontrib>Jia, Guoqing</creatorcontrib><creatorcontrib>Shen, Zhi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yulai</au><au>Yang, Caixiong</au><au>Xiao, Xueshan</au><au>Cao, Xiuli</au><au>Jia, Guoqing</au><au>Shen, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>530</volume><spage>315</spage><epage>326</epage><pages>315-326</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► Increase of the volume fraction of γ′ improved room temperature tensile strength. ► Precipitate of η phase at grain boundaries decreased the stress-rupture life. ► The orderly {1 1 1} planes at the γ′/ γ interface was distorted by a/3 〈1 1 1〉 dislocation. ► The Cr 23C 6 had an orientation relationship with γ′/ γ after stress-rupture tests. ► Decrease of the lattice misfit led to the morphology transformation of γ′ phase. Nickel based superalloy Nimonic 80A modified with various Ti contents has been developed. Microstructure evolutions were investigated by optical microscope, X-ray diffraction, scanning electron microscope and transmission electron microscope in relation to the room temperature tensile properties and stress-rupture properties at 750 °C/310 MPa. After full heat treatment, the precipitate changed from γ′ phase to γ′ + η phases, the volume fraction of γ′ phase, lattice misfit of γ′/ γ and room temperature tensile strength increased with the increase of Ti content. With the increase of lattice misfit, the orderly {1 1 1} atomic planes in the γ′/ γ interface changed to slight distorted atomic planes and edge dislocations with Burgers vector of a/3 〈1 1 1〉 were identified. The stress-rupture life first increased and then decreased with the increase of Ti content, and the decrease was primarily due to the precipitate of intermetallic η phase at grain boundaries. After stress-rupture tests, the precipitate of Cr 23C 6 carbide exhibited an orientation relationship with the γ′ and γ phases, the spherical morphology of γ′ phase transformed to cubic shape for the alloy with longest stress-rupture life and the morphology transformation process of γ′ phase was schematically suggested.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.09.091</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-12, Vol.530, p.315-326
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1671293695
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Elasticity. Plasticity
Exact sciences and technology
Fractures
Lattice misfit
Materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical property
Metals. Metallurgy
Microstructure
Morphology
Nickel base alloys
Nickel based superalloy
Nimonic 80A
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Phase transformations
Physics
Precipitates
Precipitation
Scanning electron microscopy
Superalloys
Titanium
title Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20microstructure%20and%20mechanical%20properties%20of%20Ti%20modified%20superalloy%20Nimonic%2080A&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xu,%20Yulai&rft.date=2011-12-15&rft.volume=530&rft.spage=315&rft.epage=326&rft.pages=315-326&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.09.091&rft_dat=%3Cproquest_cross%3E1671293695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671293695&rft_id=info:pmid/&rft_els_id=S0921509311010628&rfr_iscdi=true