On lossless quantum data compression with a classical helper
After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2004-06, Vol.50 (6), p.1208-1219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1219 |
---|---|
container_issue | 6 |
container_start_page | 1208 |
container_title | IEEE transactions on information theory |
container_volume | 50 |
creator | Ahlswede, R. Ning Cai |
description | After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research. |
doi_str_mv | 10.1109/TIT.2004.828071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671290352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1302299</ieee_id><sourcerecordid>689268571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI6uXbgJLsRNZ_JsEnAjg4-Bgdl0H9I0ZTqkD5MW8d-boYLgwtXlu5zvwj0A3GK0whipdbEtVgQhtpJEIoHPwAJzLjKVc3YOFghhmSnG5CW4ivGYIuOYLMDTvoO-j9G7GOHHZLpxamFlRgNt3w4hbZu-g5_NeIBp5U3K1nh4cH5w4Rpc1MZHd_Mzl6B4fSk279lu_7bdPO8ySxUeM14aUZWS1U6SsrKU1IYLZSUWLq8Er5UQ3FZCUpTzOre4lNSgmlnJRYVyQZfgYT47hP5jcnHUbROt8950rp-iJpJhohBL4OO_IM7FCaScJPT-D3rsp9ClLzRWXCqmGE7QeoZsSIqCq_UQmtaEL42RPknXSbo-Sdez9NS4mxuNc-6XpogQpeg3Wk98LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195894941</pqid></control><display><type>article</type><title>On lossless quantum data compression with a classical helper</title><source>IEEE Electronic Library (IEL)</source><creator>Ahlswede, R. ; Ning Cai</creator><creatorcontrib>Ahlswede, R. ; Ning Cai</creatorcontrib><description>After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2004.828071</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Compressing ; Data compression ; Decoders ; Decoding ; Entropy ; Hilbert space ; Information theory ; Length measurement ; Lossless ; Lower bounds ; Mathematics ; Optimization ; Performance evaluation ; Quantum mechanics ; Quantum theory ; Sufficient conditions</subject><ispartof>IEEE transactions on information theory, 2004-06, Vol.50 (6), p.1208-1219</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</citedby><cites>FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1302299$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1302299$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahlswede, R.</creatorcontrib><creatorcontrib>Ning Cai</creatorcontrib><title>On lossless quantum data compression with a classical helper</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.</description><subject>Channels</subject><subject>Compressing</subject><subject>Data compression</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Hilbert space</subject><subject>Information theory</subject><subject>Length measurement</subject><subject>Lossless</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Sufficient conditions</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLxDAURoMoOI6uXbgJLsRNZ_JsEnAjg4-Bgdl0H9I0ZTqkD5MW8d-boYLgwtXlu5zvwj0A3GK0whipdbEtVgQhtpJEIoHPwAJzLjKVc3YOFghhmSnG5CW4ivGYIuOYLMDTvoO-j9G7GOHHZLpxamFlRgNt3w4hbZu-g5_NeIBp5U3K1nh4cH5w4Rpc1MZHd_Mzl6B4fSk279lu_7bdPO8ySxUeM14aUZWS1U6SsrKU1IYLZSUWLq8Er5UQ3FZCUpTzOre4lNSgmlnJRYVyQZfgYT47hP5jcnHUbROt8950rp-iJpJhohBL4OO_IM7FCaScJPT-D3rsp9ClLzRWXCqmGE7QeoZsSIqCq_UQmtaEL42RPknXSbo-Sdez9NS4mxuNc-6XpogQpeg3Wk98LQ</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Ahlswede, R.</creator><creator>Ning Cai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040601</creationdate><title>On lossless quantum data compression with a classical helper</title><author>Ahlswede, R. ; Ning Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Channels</topic><topic>Compressing</topic><topic>Data compression</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Hilbert space</topic><topic>Information theory</topic><topic>Length measurement</topic><topic>Lossless</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahlswede, R.</creatorcontrib><creatorcontrib>Ning Cai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahlswede, R.</au><au>Ning Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On lossless quantum data compression with a classical helper</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>50</volume><issue>6</issue><spage>1208</spage><epage>1219</epage><pages>1208-1219</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2004.828071</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2004-06, Vol.50 (6), p.1208-1219 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671290352 |
source | IEEE Electronic Library (IEL) |
subjects | Channels Compressing Data compression Decoders Decoding Entropy Hilbert space Information theory Length measurement Lossless Lower bounds Mathematics Optimization Performance evaluation Quantum mechanics Quantum theory Sufficient conditions |
title | On lossless quantum data compression with a classical helper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20lossless%20quantum%20data%20compression%20with%20a%20classical%20helper&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ahlswede,%20R.&rft.date=2004-06-01&rft.volume=50&rft.issue=6&rft.spage=1208&rft.epage=1219&rft.pages=1208-1219&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2004.828071&rft_dat=%3Cproquest_RIE%3E689268571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195894941&rft_id=info:pmid/&rft_ieee_id=1302299&rfr_iscdi=true |