On lossless quantum data compression with a classical helper

After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2004-06, Vol.50 (6), p.1208-1219
Hauptverfasser: Ahlswede, R., Ning Cai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1219
container_issue 6
container_start_page 1208
container_title IEEE transactions on information theory
container_volume 50
creator Ahlswede, R.
Ning Cai
description After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.
doi_str_mv 10.1109/TIT.2004.828071
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671290352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1302299</ieee_id><sourcerecordid>689268571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI6uXbgJLsRNZ_JsEnAjg4-Bgdl0H9I0ZTqkD5MW8d-boYLgwtXlu5zvwj0A3GK0whipdbEtVgQhtpJEIoHPwAJzLjKVc3YOFghhmSnG5CW4ivGYIuOYLMDTvoO-j9G7GOHHZLpxamFlRgNt3w4hbZu-g5_NeIBp5U3K1nh4cH5w4Rpc1MZHd_Mzl6B4fSk279lu_7bdPO8ySxUeM14aUZWS1U6SsrKU1IYLZSUWLq8Er5UQ3FZCUpTzOre4lNSgmlnJRYVyQZfgYT47hP5jcnHUbROt8950rp-iJpJhohBL4OO_IM7FCaScJPT-D3rsp9ClLzRWXCqmGE7QeoZsSIqCq_UQmtaEL42RPknXSbo-Sdez9NS4mxuNc-6XpogQpeg3Wk98LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195894941</pqid></control><display><type>article</type><title>On lossless quantum data compression with a classical helper</title><source>IEEE Electronic Library (IEL)</source><creator>Ahlswede, R. ; Ning Cai</creator><creatorcontrib>Ahlswede, R. ; Ning Cai</creatorcontrib><description>After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2004.828071</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Compressing ; Data compression ; Decoders ; Decoding ; Entropy ; Hilbert space ; Information theory ; Length measurement ; Lossless ; Lower bounds ; Mathematics ; Optimization ; Performance evaluation ; Quantum mechanics ; Quantum theory ; Sufficient conditions</subject><ispartof>IEEE transactions on information theory, 2004-06, Vol.50 (6), p.1208-1219</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</citedby><cites>FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1302299$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1302299$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahlswede, R.</creatorcontrib><creatorcontrib>Ning Cai</creatorcontrib><title>On lossless quantum data compression with a classical helper</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.</description><subject>Channels</subject><subject>Compressing</subject><subject>Data compression</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Hilbert space</subject><subject>Information theory</subject><subject>Length measurement</subject><subject>Lossless</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Sufficient conditions</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLxDAURoMoOI6uXbgJLsRNZ_JsEnAjg4-Bgdl0H9I0ZTqkD5MW8d-boYLgwtXlu5zvwj0A3GK0whipdbEtVgQhtpJEIoHPwAJzLjKVc3YOFghhmSnG5CW4ivGYIuOYLMDTvoO-j9G7GOHHZLpxamFlRgNt3w4hbZu-g5_NeIBp5U3K1nh4cH5w4Rpc1MZHd_Mzl6B4fSk279lu_7bdPO8ySxUeM14aUZWS1U6SsrKU1IYLZSUWLq8Er5UQ3FZCUpTzOre4lNSgmlnJRYVyQZfgYT47hP5jcnHUbROt8950rp-iJpJhohBL4OO_IM7FCaScJPT-D3rsp9ClLzRWXCqmGE7QeoZsSIqCq_UQmtaEL42RPknXSbo-Sdez9NS4mxuNc-6XpogQpeg3Wk98LQ</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Ahlswede, R.</creator><creator>Ning Cai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040601</creationdate><title>On lossless quantum data compression with a classical helper</title><author>Ahlswede, R. ; Ning Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-5ba7db84fe82bdc32fa579c817e6d75f9775cd783065f6c1b83a0f4c857d0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Channels</topic><topic>Compressing</topic><topic>Data compression</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Hilbert space</topic><topic>Information theory</topic><topic>Length measurement</topic><topic>Lossless</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahlswede, R.</creatorcontrib><creatorcontrib>Ning Cai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahlswede, R.</au><au>Ning Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On lossless quantum data compression with a classical helper</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>50</volume><issue>6</issue><spage>1208</spage><epage>1219</epage><pages>1208-1219</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2004.828071</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2004-06, Vol.50 (6), p.1208-1219
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_1671290352
source IEEE Electronic Library (IEL)
subjects Channels
Compressing
Data compression
Decoders
Decoding
Entropy
Hilbert space
Information theory
Length measurement
Lossless
Lower bounds
Mathematics
Optimization
Performance evaluation
Quantum mechanics
Quantum theory
Sufficient conditions
title On lossless quantum data compression with a classical helper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20lossless%20quantum%20data%20compression%20with%20a%20classical%20helper&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ahlswede,%20R.&rft.date=2004-06-01&rft.volume=50&rft.issue=6&rft.spage=1208&rft.epage=1219&rft.pages=1208-1219&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2004.828071&rft_dat=%3Cproquest_RIE%3E689268571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195894941&rft_id=info:pmid/&rft_ieee_id=1302299&rfr_iscdi=true