Locking-free nonconforming finite elements for three-dimensional elasticity problem

Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-02, Vol.217 (12), p.5790-5797
Hauptverfasser: Xiao, Liu-Chao, Yang, Yong-Qin, Chen, Shao-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5797
container_issue 12
container_start_page 5790
container_title Applied mathematics and computation
container_volume 217
creator Xiao, Liu-Chao
Yang, Yong-Qin
Chen, Shao-Chun
description Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.
doi_str_mv 10.1016/j.amc.2010.12.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671279619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310012634</els_id><sourcerecordid>1671279619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG-9CF66Tpo2bfEk4j9Y8KCeQ3Y60axtsiZdYb-9KSsePQ3z5jfzmMfYOYcFBy6v1gs94KKAqS8WIPkBm_GmFnkly_aQzQBamQsAccxOYlwDQC15OWMvS4-f1r3nJhBlzjv0zvgwJCkz1tmRMuppIDfGLOnZ-JG4vLNJidY73aexjqNFO-6yTfCrBJ-yI6P7SGe_dc7e7u9ebx_z5fPD0-3NMkchYczrogNTVZxKU5alEFRpDWZl9EporLpJ76DDppFUm7o0BMIgoiiqlgpDJObscn83-X5tKY5qsBGp77Ujv42Ky5oXdSt5m1C-RzH4GAMZtQl20GGnOKgpQLVWKUA1Bah4oVKAaefi97yOqHsTtEMb_xYL0TQVtBN3veco_fptKaiIlhxSZwPhqDpv_3H5AbPyiAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671279619</pqid></control><display><type>article</type><title>Locking-free nonconforming finite elements for three-dimensional elasticity problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xiao, Liu-Chao ; Yang, Yong-Qin ; Chen, Shao-Chun</creator><creatorcontrib>Xiao, Liu-Chao ; Yang, Yong-Qin ; Chen, Shao-Chun</creatorcontrib><description>Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.12.061</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acceleration of convergence ; Boundary conditions ; Convergence ; Displacement ; Elasticity ; Error estimate ; Exact sciences and technology ; Finite element method ; Locking-free ; Mathematical analysis ; Mathematics ; Nonconforming finite element ; Norms ; Numerical analysis ; Numerical analysis. Scientific computation ; Optimization ; Sciences and techniques of general use ; Three-dimensional elasticity ; Uniform convergence</subject><ispartof>Applied mathematics and computation, 2011-02, Vol.217 (12), p.5790-5797</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</citedby><cites>FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.12.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23885091$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Liu-Chao</creatorcontrib><creatorcontrib>Yang, Yong-Qin</creatorcontrib><creatorcontrib>Chen, Shao-Chun</creatorcontrib><title>Locking-free nonconforming finite elements for three-dimensional elasticity problem</title><title>Applied mathematics and computation</title><description>Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.</description><subject>Acceleration of convergence</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Displacement</subject><subject>Elasticity</subject><subject>Error estimate</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Locking-free</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonconforming finite element</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization</subject><subject>Sciences and techniques of general use</subject><subject>Three-dimensional elasticity</subject><subject>Uniform convergence</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG-9CF66Tpo2bfEk4j9Y8KCeQ3Y60axtsiZdYb-9KSsePQ3z5jfzmMfYOYcFBy6v1gs94KKAqS8WIPkBm_GmFnkly_aQzQBamQsAccxOYlwDQC15OWMvS4-f1r3nJhBlzjv0zvgwJCkz1tmRMuppIDfGLOnZ-JG4vLNJidY73aexjqNFO-6yTfCrBJ-yI6P7SGe_dc7e7u9ebx_z5fPD0-3NMkchYczrogNTVZxKU5alEFRpDWZl9EporLpJ76DDppFUm7o0BMIgoiiqlgpDJObscn83-X5tKY5qsBGp77Ujv42Ky5oXdSt5m1C-RzH4GAMZtQl20GGnOKgpQLVWKUA1Bah4oVKAaefi97yOqHsTtEMb_xYL0TQVtBN3veco_fptKaiIlhxSZwPhqDpv_3H5AbPyiAQ</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Xiao, Liu-Chao</creator><creator>Yang, Yong-Qin</creator><creator>Chen, Shao-Chun</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110215</creationdate><title>Locking-free nonconforming finite elements for three-dimensional elasticity problem</title><author>Xiao, Liu-Chao ; Yang, Yong-Qin ; Chen, Shao-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration of convergence</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Displacement</topic><topic>Elasticity</topic><topic>Error estimate</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Locking-free</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonconforming finite element</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization</topic><topic>Sciences and techniques of general use</topic><topic>Three-dimensional elasticity</topic><topic>Uniform convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Liu-Chao</creatorcontrib><creatorcontrib>Yang, Yong-Qin</creatorcontrib><creatorcontrib>Chen, Shao-Chun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Liu-Chao</au><au>Yang, Yong-Qin</au><au>Chen, Shao-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locking-free nonconforming finite elements for three-dimensional elasticity problem</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-02-15</date><risdate>2011</risdate><volume>217</volume><issue>12</issue><spage>5790</spage><epage>5797</epage><pages>5790-5797</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.12.061</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-02, Vol.217 (12), p.5790-5797
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1671279619
source Elsevier ScienceDirect Journals Complete
subjects Acceleration of convergence
Boundary conditions
Convergence
Displacement
Elasticity
Error estimate
Exact sciences and technology
Finite element method
Locking-free
Mathematical analysis
Mathematics
Nonconforming finite element
Norms
Numerical analysis
Numerical analysis. Scientific computation
Optimization
Sciences and techniques of general use
Three-dimensional elasticity
Uniform convergence
title Locking-free nonconforming finite elements for three-dimensional elasticity problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locking-free%20nonconforming%20finite%20elements%20for%20three-dimensional%20elasticity%20problem&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Xiao,%20Liu-Chao&rft.date=2011-02-15&rft.volume=217&rft.issue=12&rft.spage=5790&rft.epage=5797&rft.pages=5790-5797&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.12.061&rft_dat=%3Cproquest_cross%3E1671279619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671279619&rft_id=info:pmid/&rft_els_id=S0096300310012634&rfr_iscdi=true