Locking-free nonconforming finite elements for three-dimensional elasticity problem
Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a n...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-02, Vol.217 (12), p.5790-5797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5797 |
---|---|
container_issue | 12 |
container_start_page | 5790 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Xiao, Liu-Chao Yang, Yong-Qin Chen, Shao-Chun |
description | Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis. |
doi_str_mv | 10.1016/j.amc.2010.12.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671279619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310012634</els_id><sourcerecordid>1671279619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG-9CF66Tpo2bfEk4j9Y8KCeQ3Y60axtsiZdYb-9KSsePQ3z5jfzmMfYOYcFBy6v1gs94KKAqS8WIPkBm_GmFnkly_aQzQBamQsAccxOYlwDQC15OWMvS4-f1r3nJhBlzjv0zvgwJCkz1tmRMuppIDfGLOnZ-JG4vLNJidY73aexjqNFO-6yTfCrBJ-yI6P7SGe_dc7e7u9ebx_z5fPD0-3NMkchYczrogNTVZxKU5alEFRpDWZl9EporLpJ76DDppFUm7o0BMIgoiiqlgpDJObscn83-X5tKY5qsBGp77Ujv42Ky5oXdSt5m1C-RzH4GAMZtQl20GGnOKgpQLVWKUA1Bah4oVKAaefi97yOqHsTtEMb_xYL0TQVtBN3veco_fptKaiIlhxSZwPhqDpv_3H5AbPyiAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671279619</pqid></control><display><type>article</type><title>Locking-free nonconforming finite elements for three-dimensional elasticity problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xiao, Liu-Chao ; Yang, Yong-Qin ; Chen, Shao-Chun</creator><creatorcontrib>Xiao, Liu-Chao ; Yang, Yong-Qin ; Chen, Shao-Chun</creatorcontrib><description>Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.12.061</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acceleration of convergence ; Boundary conditions ; Convergence ; Displacement ; Elasticity ; Error estimate ; Exact sciences and technology ; Finite element method ; Locking-free ; Mathematical analysis ; Mathematics ; Nonconforming finite element ; Norms ; Numerical analysis ; Numerical analysis. Scientific computation ; Optimization ; Sciences and techniques of general use ; Three-dimensional elasticity ; Uniform convergence</subject><ispartof>Applied mathematics and computation, 2011-02, Vol.217 (12), p.5790-5797</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</citedby><cites>FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.12.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23885091$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Liu-Chao</creatorcontrib><creatorcontrib>Yang, Yong-Qin</creatorcontrib><creatorcontrib>Chen, Shao-Chun</creatorcontrib><title>Locking-free nonconforming finite elements for three-dimensional elasticity problem</title><title>Applied mathematics and computation</title><description>Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.</description><subject>Acceleration of convergence</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Displacement</subject><subject>Elasticity</subject><subject>Error estimate</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Locking-free</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonconforming finite element</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization</subject><subject>Sciences and techniques of general use</subject><subject>Three-dimensional elasticity</subject><subject>Uniform convergence</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG-9CF66Tpo2bfEk4j9Y8KCeQ3Y60axtsiZdYb-9KSsePQ3z5jfzmMfYOYcFBy6v1gs94KKAqS8WIPkBm_GmFnkly_aQzQBamQsAccxOYlwDQC15OWMvS4-f1r3nJhBlzjv0zvgwJCkz1tmRMuppIDfGLOnZ-JG4vLNJidY73aexjqNFO-6yTfCrBJ-yI6P7SGe_dc7e7u9ebx_z5fPD0-3NMkchYczrogNTVZxKU5alEFRpDWZl9EporLpJ76DDppFUm7o0BMIgoiiqlgpDJObscn83-X5tKY5qsBGp77Ujv42Ky5oXdSt5m1C-RzH4GAMZtQl20GGnOKgpQLVWKUA1Bah4oVKAaefi97yOqHsTtEMb_xYL0TQVtBN3veco_fptKaiIlhxSZwPhqDpv_3H5AbPyiAQ</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Xiao, Liu-Chao</creator><creator>Yang, Yong-Qin</creator><creator>Chen, Shao-Chun</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110215</creationdate><title>Locking-free nonconforming finite elements for three-dimensional elasticity problem</title><author>Xiao, Liu-Chao ; Yang, Yong-Qin ; Chen, Shao-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-72d0f551e4f44433e5aa0fbfab3ac5d1e4fd0dc886e7f74fe03fccc3259e2fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration of convergence</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Displacement</topic><topic>Elasticity</topic><topic>Error estimate</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Locking-free</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonconforming finite element</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization</topic><topic>Sciences and techniques of general use</topic><topic>Three-dimensional elasticity</topic><topic>Uniform convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Liu-Chao</creatorcontrib><creatorcontrib>Yang, Yong-Qin</creatorcontrib><creatorcontrib>Chen, Shao-Chun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Liu-Chao</au><au>Yang, Yong-Qin</au><au>Chen, Shao-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locking-free nonconforming finite elements for three-dimensional elasticity problem</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-02-15</date><risdate>2011</risdate><volume>217</volume><issue>12</issue><spage>5790</spage><epage>5797</epage><pages>5790-5797</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.12.061</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-02, Vol.217 (12), p.5790-5797 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671279619 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acceleration of convergence Boundary conditions Convergence Displacement Elasticity Error estimate Exact sciences and technology Finite element method Locking-free Mathematical analysis Mathematics Nonconforming finite element Norms Numerical analysis Numerical analysis. Scientific computation Optimization Sciences and techniques of general use Three-dimensional elasticity Uniform convergence |
title | Locking-free nonconforming finite elements for three-dimensional elasticity problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locking-free%20nonconforming%20finite%20elements%20for%20three-dimensional%20elasticity%20problem&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Xiao,%20Liu-Chao&rft.date=2011-02-15&rft.volume=217&rft.issue=12&rft.spage=5790&rft.epage=5797&rft.pages=5790-5797&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.12.061&rft_dat=%3Cproquest_cross%3E1671279619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671279619&rft_id=info:pmid/&rft_els_id=S0096300310012634&rfr_iscdi=true |