Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation

Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2011-04, Vol.19 (4), p.354-366
Hauptverfasser: Gruber, J.K., Guzmán, J.L., Rodríguez, F., Bordons, C., Berenguel, M., Sánchez, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 4
container_start_page 354
container_title Control engineering practice
container_volume 19
creator Gruber, J.K.
Guzmán, J.L.
Rodríguez, F.
Bordons, C.
Berenguel, M.
Sánchez, J.A.
description Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem faced by far in greenhouse climate control is cooling, which, for dynamical reasons, leads to natural ventilation as a standard tool. This work addresses the design of a nonlinear model predictive control (NMPC) strategy for greenhouse temperature control using natural ventilation. The NMPC strategy is based on a second-order Volterra series model identified from experimental input/output data of a greenhouse. These models, representing the simple and logical extension of convolution models, can be used to approximate the nonlinear dynamic effect of the ventilation and other environmental conditions on the greenhouse temperature. The developed NMPC is applied to a greenhouse and the control performance of the proposed strategy will be illustrated by means of experimental results. ► Second-order Volterra model describing the inside greenhouse temperature. ► Nonlinear predictive controller to control the diurnal greenhouse temperature. ► Adequate results for different agricultural seasons (spring and autumn).
doi_str_mv 10.1016/j.conengprac.2010.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671278286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967066110002649</els_id><sourcerecordid>1671278286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-ce2def690690c8da94f6ecada96c0cf616da84945c5441167f4765ee672b87483</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EEqHwH3ypxGVTe9fx2keIKFTqBwfgak29s8GpY4exU4l_j6NU9FhppBmN3nc-Hsa4FEsppL7YLn1OmDZ7Ar_sxbHdL4VQr9hCmnHotB3sa7YQVo-d0Fq-Ze9K2YpmtVYu2MNtTjEkBOI339f8HgpOPCcO_FeOFYmAF6SAhe_yhJHPmfiGENPvfCjIK-72SFAPhLzdUSlHfighbXg6NiHyR0w1RKghp_fszQyx4IenfMZ-Xn75sf7WXd99vVp_uu78YGTtPPYTztqKFt5MYNWs0UMrtBd-1lJPYJRVK79SSko9zmrUK0Q99vdmVGY4Yx9Pc_eU_xywVLcLxWOMkLBd7ZpF9qPpjW5Sc5J6yqUQzm5PYQf010nhjnzd1j3zdUe-Tvau8W3W86ctUDzEmSD5UP77e9VoWzk03eeTDtvLjwHJFR8weZwCoa9uyuHlZf8A_5eX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671278286</pqid></control><display><type>article</type><title>Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation</title><source>ScienceDirect</source><creator>Gruber, J.K. ; Guzmán, J.L. ; Rodríguez, F. ; Bordons, C. ; Berenguel, M. ; Sánchez, J.A.</creator><creatorcontrib>Gruber, J.K. ; Guzmán, J.L. ; Rodríguez, F. ; Bordons, C. ; Berenguel, M. ; Sánchez, J.A.</creatorcontrib><description>Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem faced by far in greenhouse climate control is cooling, which, for dynamical reasons, leads to natural ventilation as a standard tool. This work addresses the design of a nonlinear model predictive control (NMPC) strategy for greenhouse temperature control using natural ventilation. The NMPC strategy is based on a second-order Volterra series model identified from experimental input/output data of a greenhouse. These models, representing the simple and logical extension of convolution models, can be used to approximate the nonlinear dynamic effect of the ventilation and other environmental conditions on the greenhouse temperature. The developed NMPC is applied to a greenhouse and the control performance of the proposed strategy will be illustrated by means of experimental results. ► Second-order Volterra model describing the inside greenhouse temperature. ► Nonlinear predictive controller to control the diurnal greenhouse temperature. ► Adequate results for different agricultural seasons (spring and autumn).</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/j.conengprac.2010.12.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agronomy. Soil science and plant productions ; Air pollution ; Applied sciences ; Biological and medical sciences ; Climate ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Greenhouse climate control ; Greenhouses ; Identification ; Mathematical models ; Modelling and identification ; Nonlinear model predictive control ; Nonlinearity ; Optimal control ; Protected cultivation ; Soilless cultures. Protected cultivation ; Strategy ; Temperature control ; Ventilation ; Volterra series model</subject><ispartof>Control engineering practice, 2011-04, Vol.19 (4), p.354-366</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-ce2def690690c8da94f6ecada96c0cf616da84945c5441167f4765ee672b87483</citedby><cites>FETCH-LOGICAL-c381t-ce2def690690c8da94f6ecada96c0cf616da84945c5441167f4765ee672b87483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.conengprac.2010.12.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24066913$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruber, J.K.</creatorcontrib><creatorcontrib>Guzmán, J.L.</creatorcontrib><creatorcontrib>Rodríguez, F.</creatorcontrib><creatorcontrib>Bordons, C.</creatorcontrib><creatorcontrib>Berenguel, M.</creatorcontrib><creatorcontrib>Sánchez, J.A.</creatorcontrib><title>Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation</title><title>Control engineering practice</title><description>Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem faced by far in greenhouse climate control is cooling, which, for dynamical reasons, leads to natural ventilation as a standard tool. This work addresses the design of a nonlinear model predictive control (NMPC) strategy for greenhouse temperature control using natural ventilation. The NMPC strategy is based on a second-order Volterra series model identified from experimental input/output data of a greenhouse. These models, representing the simple and logical extension of convolution models, can be used to approximate the nonlinear dynamic effect of the ventilation and other environmental conditions on the greenhouse temperature. The developed NMPC is applied to a greenhouse and the control performance of the proposed strategy will be illustrated by means of experimental results. ► Second-order Volterra model describing the inside greenhouse temperature. ► Nonlinear predictive controller to control the diurnal greenhouse temperature. ► Adequate results for different agricultural seasons (spring and autumn).</description><subject>Agronomy. Soil science and plant productions</subject><subject>Air pollution</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Climate</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Greenhouse climate control</subject><subject>Greenhouses</subject><subject>Identification</subject><subject>Mathematical models</subject><subject>Modelling and identification</subject><subject>Nonlinear model predictive control</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Protected cultivation</subject><subject>Soilless cultures. Protected cultivation</subject><subject>Strategy</subject><subject>Temperature control</subject><subject>Ventilation</subject><subject>Volterra series model</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi0EEqHwH3ypxGVTe9fx2keIKFTqBwfgak29s8GpY4exU4l_j6NU9FhppBmN3nc-Hsa4FEsppL7YLn1OmDZ7Ar_sxbHdL4VQr9hCmnHotB3sa7YQVo-d0Fq-Ze9K2YpmtVYu2MNtTjEkBOI339f8HgpOPCcO_FeOFYmAF6SAhe_yhJHPmfiGENPvfCjIK-72SFAPhLzdUSlHfighbXg6NiHyR0w1RKghp_fszQyx4IenfMZ-Xn75sf7WXd99vVp_uu78YGTtPPYTztqKFt5MYNWs0UMrtBd-1lJPYJRVK79SSko9zmrUK0Q99vdmVGY4Yx9Pc_eU_xywVLcLxWOMkLBd7ZpF9qPpjW5Sc5J6yqUQzm5PYQf010nhjnzd1j3zdUe-Tvau8W3W86ctUDzEmSD5UP77e9VoWzk03eeTDtvLjwHJFR8weZwCoa9uyuHlZf8A_5eX_Q</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Gruber, J.K.</creator><creator>Guzmán, J.L.</creator><creator>Rodríguez, F.</creator><creator>Bordons, C.</creator><creator>Berenguel, M.</creator><creator>Sánchez, J.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation</title><author>Gruber, J.K. ; Guzmán, J.L. ; Rodríguez, F. ; Bordons, C. ; Berenguel, M. ; Sánchez, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-ce2def690690c8da94f6ecada96c0cf616da84945c5441167f4765ee672b87483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Air pollution</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Climate</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Greenhouse climate control</topic><topic>Greenhouses</topic><topic>Identification</topic><topic>Mathematical models</topic><topic>Modelling and identification</topic><topic>Nonlinear model predictive control</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Protected cultivation</topic><topic>Soilless cultures. Protected cultivation</topic><topic>Strategy</topic><topic>Temperature control</topic><topic>Ventilation</topic><topic>Volterra series model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, J.K.</creatorcontrib><creatorcontrib>Guzmán, J.L.</creatorcontrib><creatorcontrib>Rodríguez, F.</creatorcontrib><creatorcontrib>Bordons, C.</creatorcontrib><creatorcontrib>Berenguel, M.</creatorcontrib><creatorcontrib>Sánchez, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, J.K.</au><au>Guzmán, J.L.</au><au>Rodríguez, F.</au><au>Bordons, C.</au><au>Berenguel, M.</au><au>Sánchez, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation</atitle><jtitle>Control engineering practice</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>354</spage><epage>366</epage><pages>354-366</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem faced by far in greenhouse climate control is cooling, which, for dynamical reasons, leads to natural ventilation as a standard tool. This work addresses the design of a nonlinear model predictive control (NMPC) strategy for greenhouse temperature control using natural ventilation. The NMPC strategy is based on a second-order Volterra series model identified from experimental input/output data of a greenhouse. These models, representing the simple and logical extension of convolution models, can be used to approximate the nonlinear dynamic effect of the ventilation and other environmental conditions on the greenhouse temperature. The developed NMPC is applied to a greenhouse and the control performance of the proposed strategy will be illustrated by means of experimental results. ► Second-order Volterra model describing the inside greenhouse temperature. ► Nonlinear predictive controller to control the diurnal greenhouse temperature. ► Adequate results for different agricultural seasons (spring and autumn).</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.conengprac.2010.12.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0661
ispartof Control engineering practice, 2011-04, Vol.19 (4), p.354-366
issn 0967-0661
1873-6939
language eng
recordid cdi_proquest_miscellaneous_1671278286
source ScienceDirect
subjects Agronomy. Soil science and plant productions
Air pollution
Applied sciences
Biological and medical sciences
Climate
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Greenhouse climate control
Greenhouses
Identification
Mathematical models
Modelling and identification
Nonlinear model predictive control
Nonlinearity
Optimal control
Protected cultivation
Soilless cultures. Protected cultivation
Strategy
Temperature control
Ventilation
Volterra series model
title Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20MPC%20based%20on%20a%20Volterra%20series%20model%20for%20greenhouse%20temperature%20control%20using%20natural%20ventilation&rft.jtitle=Control%20engineering%20practice&rft.au=Gruber,%20J.K.&rft.date=2011-04-01&rft.volume=19&rft.issue=4&rft.spage=354&rft.epage=366&rft.pages=354-366&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/j.conengprac.2010.12.004&rft_dat=%3Cproquest_cross%3E1671278286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671278286&rft_id=info:pmid/&rft_els_id=S0967066110002649&rfr_iscdi=true