Numerical similarity reductions of the (1+3)-dimensional Burgers equation

We consider the (1+3)-dimensional Burgers equation u t = u xx + u yy + u zz + uu x which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-05, Vol.217 (18), p.7455-7461
Hauptverfasser: Christou, M.A., Sophocleous, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7461
container_issue 18
container_start_page 7455
container_title Applied mathematics and computation
container_volume 217
creator Christou, M.A.
Sophocleous, C.
description We consider the (1+3)-dimensional Burgers equation u t = u xx + u yy + u zz + uu x which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.
doi_str_mv 10.1016/j.amc.2011.02.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671277799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311002323</els_id><sourcerecordid>1671277799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-24096951ffca9f5a3dd98e5f9c3da0ea4140db9937bbb607f835a274d18bc4cb3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoZttfkBuvgRSit0ZS7ZscmqWNllY2ktyFrI0arX4I5Hswv77atklx5wGhmfemXkYu0YoELD-ti_0YIoSEAsoCxDlB7bCRvK8qkV7wVYAbZ1zAP6JXca4BwBZo1ix7a9loOCN7rPoB9_r4OdDFsguZvbTGLPJZfNfym7xK_-SWz_QGFM_4fdL-EMhZvS66CP6mX10uo90da5r9vzzx9PmMd_9fthuvu9yw7Gc81KkS9oKnTO6dZXm1rYNVa413GogLVCA7dqWy67rapCu4ZUupbDYdEaYjq_Z7Sn3JUyvC8VZDT4a6ns90rREhbXEUkqZItYMT6gJU4yBnHoJftDhoBDUUZvaq6RNHbUpKFXSlmZuzvE6Jisu6NH4-DaYzm-wETJxdyeO0q__PAUVjafRkPWBzKzs5N_Z8h8S8YH3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671277799</pqid></control><display><type>article</type><title>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</title><source>Elsevier ScienceDirect Journals</source><creator>Christou, M.A. ; Sophocleous, C.</creator><creatorcontrib>Christou, M.A. ; Sophocleous, C.</creatorcontrib><description>We consider the (1+3)-dimensional Burgers equation u t = u xx + u yy + u zz + uu x which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.02.042</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Burgers equation ; Computation ; Differential equations ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Numerical solutions ; Ordinary differential equations ; Partial differential equations ; Reduction ; Sciences and techniques of general use ; Similarity ; Similarity reductions ; Symmetry</subject><ispartof>Applied mathematics and computation, 2011-05, Vol.217 (18), p.7455-7461</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-24096951ffca9f5a3dd98e5f9c3da0ea4140db9937bbb607f835a274d18bc4cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.02.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24081847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Christou, M.A.</creatorcontrib><creatorcontrib>Sophocleous, C.</creatorcontrib><title>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</title><title>Applied mathematics and computation</title><description>We consider the (1+3)-dimensional Burgers equation u t = u xx + u yy + u zz + uu x which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.</description><subject>Burgers equation</subject><subject>Computation</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Numerical solutions</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Reduction</subject><subject>Sciences and techniques of general use</subject><subject>Similarity</subject><subject>Similarity reductions</subject><subject>Symmetry</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoZttfkBuvgRSit0ZS7ZscmqWNllY2ktyFrI0arX4I5Hswv77atklx5wGhmfemXkYu0YoELD-ti_0YIoSEAsoCxDlB7bCRvK8qkV7wVYAbZ1zAP6JXca4BwBZo1ix7a9loOCN7rPoB9_r4OdDFsguZvbTGLPJZfNfym7xK_-SWz_QGFM_4fdL-EMhZvS66CP6mX10uo90da5r9vzzx9PmMd_9fthuvu9yw7Gc81KkS9oKnTO6dZXm1rYNVa413GogLVCA7dqWy67rapCu4ZUupbDYdEaYjq_Z7Sn3JUyvC8VZDT4a6ns90rREhbXEUkqZItYMT6gJU4yBnHoJftDhoBDUUZvaq6RNHbUpKFXSlmZuzvE6Jisu6NH4-DaYzm-wETJxdyeO0q__PAUVjafRkPWBzKzs5N_Z8h8S8YH3</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Christou, M.A.</creator><creator>Sophocleous, C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110515</creationdate><title>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</title><author>Christou, M.A. ; Sophocleous, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-24096951ffca9f5a3dd98e5f9c3da0ea4140db9937bbb607f835a274d18bc4cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Burgers equation</topic><topic>Computation</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Numerical solutions</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Reduction</topic><topic>Sciences and techniques of general use</topic><topic>Similarity</topic><topic>Similarity reductions</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christou, M.A.</creatorcontrib><creatorcontrib>Sophocleous, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christou, M.A.</au><au>Sophocleous, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-05-15</date><risdate>2011</risdate><volume>217</volume><issue>18</issue><spage>7455</spage><epage>7461</epage><pages>7455-7461</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We consider the (1+3)-dimensional Burgers equation u t = u xx + u yy + u zz + uu x which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.02.042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-05, Vol.217 (18), p.7455-7461
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1671277799
source Elsevier ScienceDirect Journals
subjects Burgers equation
Computation
Differential equations
Exact sciences and technology
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Numerical solutions
Ordinary differential equations
Partial differential equations
Reduction
Sciences and techniques of general use
Similarity
Similarity reductions
Symmetry
title Numerical similarity reductions of the (1+3)-dimensional Burgers equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20similarity%20reductions%20of%20the%20(1+3)-dimensional%20Burgers%20equation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Christou,%20M.A.&rft.date=2011-05-15&rft.volume=217&rft.issue=18&rft.spage=7455&rft.epage=7461&rft.pages=7455-7461&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.02.042&rft_dat=%3Cproquest_cross%3E1671277799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671277799&rft_id=info:pmid/&rft_els_id=S0096300311002323&rfr_iscdi=true