Numerical similarity reductions of the (1+3)-dimensional Burgers equation
We consider the (1+3)-dimensional Burgers equation u t = u xx + u yy + u zz + uu x which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential eq...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-05, Vol.217 (18), p.7455-7461 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7461 |
---|---|
container_issue | 18 |
container_start_page | 7455 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Christou, M.A. Sophocleous, C. |
description | We consider the (1+3)-dimensional Burgers equation
u
t
=
u
xx
+
u
yy
+
u
zz
+
uu
x
which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations. |
doi_str_mv | 10.1016/j.amc.2011.02.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671277799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311002323</els_id><sourcerecordid>1671277799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-24096951ffca9f5a3dd98e5f9c3da0ea4140db9937bbb607f835a274d18bc4cb3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoZttfkBuvgRSit0ZS7ZscmqWNllY2ktyFrI0arX4I5Hswv77atklx5wGhmfemXkYu0YoELD-ti_0YIoSEAsoCxDlB7bCRvK8qkV7wVYAbZ1zAP6JXca4BwBZo1ix7a9loOCN7rPoB9_r4OdDFsguZvbTGLPJZfNfym7xK_-SWz_QGFM_4fdL-EMhZvS66CP6mX10uo90da5r9vzzx9PmMd_9fthuvu9yw7Gc81KkS9oKnTO6dZXm1rYNVa413GogLVCA7dqWy67rapCu4ZUupbDYdEaYjq_Z7Sn3JUyvC8VZDT4a6ns90rREhbXEUkqZItYMT6gJU4yBnHoJftDhoBDUUZvaq6RNHbUpKFXSlmZuzvE6Jisu6NH4-DaYzm-wETJxdyeO0q__PAUVjafRkPWBzKzs5N_Z8h8S8YH3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671277799</pqid></control><display><type>article</type><title>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</title><source>Elsevier ScienceDirect Journals</source><creator>Christou, M.A. ; Sophocleous, C.</creator><creatorcontrib>Christou, M.A. ; Sophocleous, C.</creatorcontrib><description>We consider the (1+3)-dimensional Burgers equation
u
t
=
u
xx
+
u
yy
+
u
zz
+
uu
x
which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.02.042</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Burgers equation ; Computation ; Differential equations ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Numerical solutions ; Ordinary differential equations ; Partial differential equations ; Reduction ; Sciences and techniques of general use ; Similarity ; Similarity reductions ; Symmetry</subject><ispartof>Applied mathematics and computation, 2011-05, Vol.217 (18), p.7455-7461</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-24096951ffca9f5a3dd98e5f9c3da0ea4140db9937bbb607f835a274d18bc4cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.02.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24081847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Christou, M.A.</creatorcontrib><creatorcontrib>Sophocleous, C.</creatorcontrib><title>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</title><title>Applied mathematics and computation</title><description>We consider the (1+3)-dimensional Burgers equation
u
t
=
u
xx
+
u
yy
+
u
zz
+
uu
x
which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.</description><subject>Burgers equation</subject><subject>Computation</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Numerical solutions</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Reduction</subject><subject>Sciences and techniques of general use</subject><subject>Similarity</subject><subject>Similarity reductions</subject><subject>Symmetry</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoZttfkBuvgRSit0ZS7ZscmqWNllY2ktyFrI0arX4I5Hswv77atklx5wGhmfemXkYu0YoELD-ti_0YIoSEAsoCxDlB7bCRvK8qkV7wVYAbZ1zAP6JXca4BwBZo1ix7a9loOCN7rPoB9_r4OdDFsguZvbTGLPJZfNfym7xK_-SWz_QGFM_4fdL-EMhZvS66CP6mX10uo90da5r9vzzx9PmMd_9fthuvu9yw7Gc81KkS9oKnTO6dZXm1rYNVa413GogLVCA7dqWy67rapCu4ZUupbDYdEaYjq_Z7Sn3JUyvC8VZDT4a6ns90rREhbXEUkqZItYMT6gJU4yBnHoJftDhoBDUUZvaq6RNHbUpKFXSlmZuzvE6Jisu6NH4-DaYzm-wETJxdyeO0q__PAUVjafRkPWBzKzs5N_Z8h8S8YH3</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Christou, M.A.</creator><creator>Sophocleous, C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110515</creationdate><title>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</title><author>Christou, M.A. ; Sophocleous, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-24096951ffca9f5a3dd98e5f9c3da0ea4140db9937bbb607f835a274d18bc4cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Burgers equation</topic><topic>Computation</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Numerical solutions</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Reduction</topic><topic>Sciences and techniques of general use</topic><topic>Similarity</topic><topic>Similarity reductions</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christou, M.A.</creatorcontrib><creatorcontrib>Sophocleous, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christou, M.A.</au><au>Sophocleous, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical similarity reductions of the (1+3)-dimensional Burgers equation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-05-15</date><risdate>2011</risdate><volume>217</volume><issue>18</issue><spage>7455</spage><epage>7461</epage><pages>7455-7461</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We consider the (1+3)-dimensional Burgers equation
u
t
=
u
xx
+
u
yy
+
u
zz
+
uu
x
which has considerable interest in mathematical physics. Lie symmetries are used to reduce it to certain ordinary differential equations. We employ numerical methods to solve a number of these ordinary differential equations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.02.042</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-05, Vol.217 (18), p.7455-7461 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671277799 |
source | Elsevier ScienceDirect Journals |
subjects | Burgers equation Computation Differential equations Exact sciences and technology Mathematical analysis Mathematical models Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Numerical solutions Ordinary differential equations Partial differential equations Reduction Sciences and techniques of general use Similarity Similarity reductions Symmetry |
title | Numerical similarity reductions of the (1+3)-dimensional Burgers equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20similarity%20reductions%20of%20the%20(1+3)-dimensional%20Burgers%20equation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Christou,%20M.A.&rft.date=2011-05-15&rft.volume=217&rft.issue=18&rft.spage=7455&rft.epage=7461&rft.pages=7455-7461&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.02.042&rft_dat=%3Cproquest_cross%3E1671277799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671277799&rft_id=info:pmid/&rft_els_id=S0096300311002323&rfr_iscdi=true |