An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack

A nonlinear, lumped-parameter mathematical model of direct reforming carbonate fuel cell stack is extended by deriving an explicit set of differential equations for computer simulation. The equilibrium assumption used for the water-gas shift reaction results in an implicit equation set, previously s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE power engineering review 2001-09, Vol.21 (9), p.63-63
Hauptverfasser: Lukas, M. D., Lee, K. Y., Ghezel-Ayagh, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 9
container_start_page 63
container_title IEEE power engineering review
container_volume 21
creator Lukas, M. D.
Lee, K. Y.
Ghezel-Ayagh, H.
description A nonlinear, lumped-parameter mathematical model of direct reforming carbonate fuel cell stack is extended by deriving an explicit set of differential equations for computer simulation. The equilibrium assumption used for the water-gas shift reaction results in an implicit equation set, previously solved using numerical techniques. An explicit equation set is derived by eliminating a key variable associated with the water-gas shift reaction. In addition, results are improved by incorporating a fuel cell performance model to account for reversible cell potential and polarization losses. This requires determination of intermediate gas composition at the cell anode inlet, resulting in additional computations. All results and physical data used are specific to a lumped 16-stack 2-MW system design, a precursor to a demonstration plant that had been operated at Santa Clara, CA. Steady state results are validated for several load points over the upper region of operation and transient results are provided for sudden load change.
doi_str_mv 10.1109/MPER.2001.4311625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671277311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4311625</ieee_id><sourcerecordid>1671277311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1701-263638dac73268649ba4a30f3585459dc635024208b01a876347e7809dd8d17a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwET1625jvZY9m2VrAoVc8hzWYldbtbk12w_96UVg-eZoZ5Znh5ALjGaIQxyu8XL9PliCCER4xiLAg_AQPMucqwRPwUDBCRJPWEnYOLGNcIISkUH4D5uIHT723tre_gZNeYjbdw0ZauhlUb4MQHZzu4dGnY-OYDFias2sZ0Ds76xBSuruFrZ-znJTirTB3d1bEOwfts-lbMs6fnh8di_JTZlARnRFBBVWmspEQowfKVYYaiinLFGc9LKyhHhBGkVggbJQVl0kmF8rJUJZaGDsHd4e82tF-9i53e-GhTDNO4to8aC4mJlElCQm__oeu2D01Kp5ViUsmc8gThA2RDG2Nwld4GvzFhpzHSe7V6r1bv1eqj2nRzc7jxzrk__nf7A-AucQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884787935</pqid></control><display><type>article</type><title>An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack</title><source>IEEE Electronic Library (IEL)</source><creator>Lukas, M. D. ; Lee, K. Y. ; Ghezel-Ayagh, H.</creator><creatorcontrib>Lukas, M. D. ; Lee, K. Y. ; Ghezel-Ayagh, H.</creatorcontrib><description>A nonlinear, lumped-parameter mathematical model of direct reforming carbonate fuel cell stack is extended by deriving an explicit set of differential equations for computer simulation. The equilibrium assumption used for the water-gas shift reaction results in an implicit equation set, previously solved using numerical techniques. An explicit equation set is derived by eliminating a key variable associated with the water-gas shift reaction. In addition, results are improved by incorporating a fuel cell performance model to account for reversible cell potential and polarization losses. This requires determination of intermediate gas composition at the cell anode inlet, resulting in additional computations. All results and physical data used are specific to a lumped 16-stack 2-MW system design, a precursor to a demonstration plant that had been operated at Santa Clara, CA. Steady state results are validated for several load points over the upper region of operation and transient results are provided for sudden load change.</description><identifier>ISSN: 0272-1724</identifier><identifier>EISSN: 1558-1705</identifier><identifier>DOI: 10.1109/MPER.2001.4311625</identifier><identifier>CODEN: IPERDV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carbonates ; Computer simulation ; Differential equations ; Fuel cells ; Gas composition ; Load flow ; Mathematical models ; Nonlinear equations ; Power engineering education ; Power system analysis computing ; Power system control ; Power system modeling ; Power system planning ; Power system transients ; Processor scheduling ; Reforming ; Shift reaction ; Stacks ; Studies</subject><ispartof>IEEE power engineering review, 2001-09, Vol.21 (9), p.63-63</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1701-263638dac73268649ba4a30f3585459dc635024208b01a876347e7809dd8d17a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4311625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4311625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lukas, M. D.</creatorcontrib><creatorcontrib>Lee, K. Y.</creatorcontrib><creatorcontrib>Ghezel-Ayagh, H.</creatorcontrib><title>An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack</title><title>IEEE power engineering review</title><addtitle>PER</addtitle><description>A nonlinear, lumped-parameter mathematical model of direct reforming carbonate fuel cell stack is extended by deriving an explicit set of differential equations for computer simulation. The equilibrium assumption used for the water-gas shift reaction results in an implicit equation set, previously solved using numerical techniques. An explicit equation set is derived by eliminating a key variable associated with the water-gas shift reaction. In addition, results are improved by incorporating a fuel cell performance model to account for reversible cell potential and polarization losses. This requires determination of intermediate gas composition at the cell anode inlet, resulting in additional computations. All results and physical data used are specific to a lumped 16-stack 2-MW system design, a precursor to a demonstration plant that had been operated at Santa Clara, CA. Steady state results are validated for several load points over the upper region of operation and transient results are provided for sudden load change.</description><subject>Carbonates</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Fuel cells</subject><subject>Gas composition</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Power engineering education</subject><subject>Power system analysis computing</subject><subject>Power system control</subject><subject>Power system modeling</subject><subject>Power system planning</subject><subject>Power system transients</subject><subject>Processor scheduling</subject><subject>Reforming</subject><subject>Shift reaction</subject><subject>Stacks</subject><subject>Studies</subject><issn>0272-1724</issn><issn>1558-1705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwET1625jvZY9m2VrAoVc8hzWYldbtbk12w_96UVg-eZoZ5Znh5ALjGaIQxyu8XL9PliCCER4xiLAg_AQPMucqwRPwUDBCRJPWEnYOLGNcIISkUH4D5uIHT723tre_gZNeYjbdw0ZauhlUb4MQHZzu4dGnY-OYDFias2sZ0Ds76xBSuruFrZ-znJTirTB3d1bEOwfts-lbMs6fnh8di_JTZlARnRFBBVWmspEQowfKVYYaiinLFGc9LKyhHhBGkVggbJQVl0kmF8rJUJZaGDsHd4e82tF-9i53e-GhTDNO4to8aC4mJlElCQm__oeu2D01Kp5ViUsmc8gThA2RDG2Nwld4GvzFhpzHSe7V6r1bv1eqj2nRzc7jxzrk__nf7A-AucQU</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Lukas, M. D.</creator><creator>Lee, K. Y.</creator><creator>Ghezel-Ayagh, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20010901</creationdate><title>An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack</title><author>Lukas, M. D. ; Lee, K. Y. ; Ghezel-Ayagh, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1701-263638dac73268649ba4a30f3585459dc635024208b01a876347e7809dd8d17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Carbonates</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Fuel cells</topic><topic>Gas composition</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Power engineering education</topic><topic>Power system analysis computing</topic><topic>Power system control</topic><topic>Power system modeling</topic><topic>Power system planning</topic><topic>Power system transients</topic><topic>Processor scheduling</topic><topic>Reforming</topic><topic>Shift reaction</topic><topic>Stacks</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Lukas, M. D.</creatorcontrib><creatorcontrib>Lee, K. Y.</creatorcontrib><creatorcontrib>Ghezel-Ayagh, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE power engineering review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lukas, M. D.</au><au>Lee, K. Y.</au><au>Ghezel-Ayagh, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack</atitle><jtitle>IEEE power engineering review</jtitle><stitle>PER</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>21</volume><issue>9</issue><spage>63</spage><epage>63</epage><pages>63-63</pages><issn>0272-1724</issn><eissn>1558-1705</eissn><coden>IPERDV</coden><abstract>A nonlinear, lumped-parameter mathematical model of direct reforming carbonate fuel cell stack is extended by deriving an explicit set of differential equations for computer simulation. The equilibrium assumption used for the water-gas shift reaction results in an implicit equation set, previously solved using numerical techniques. An explicit equation set is derived by eliminating a key variable associated with the water-gas shift reaction. In addition, results are improved by incorporating a fuel cell performance model to account for reversible cell potential and polarization losses. This requires determination of intermediate gas composition at the cell anode inlet, resulting in additional computations. All results and physical data used are specific to a lumped 16-stack 2-MW system design, a precursor to a demonstration plant that had been operated at Santa Clara, CA. Steady state results are validated for several load points over the upper region of operation and transient results are provided for sudden load change.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MPER.2001.4311625</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-1724
ispartof IEEE power engineering review, 2001-09, Vol.21 (9), p.63-63
issn 0272-1724
1558-1705
language eng
recordid cdi_proquest_miscellaneous_1671277311
source IEEE Electronic Library (IEL)
subjects Carbonates
Computer simulation
Differential equations
Fuel cells
Gas composition
Load flow
Mathematical models
Nonlinear equations
Power engineering education
Power system analysis computing
Power system control
Power system modeling
Power system planning
Power system transients
Processor scheduling
Reforming
Shift reaction
Stacks
Studies
title An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explicit%20Dynamic%20Model%20for%20Direct%20Reforming%20Carbonate%20Fuel%20Cell%20Stack&rft.jtitle=IEEE%20power%20engineering%20review&rft.au=Lukas,%20M.%20D.&rft.date=2001-09-01&rft.volume=21&rft.issue=9&rft.spage=63&rft.epage=63&rft.pages=63-63&rft.issn=0272-1724&rft.eissn=1558-1705&rft.coden=IPERDV&rft_id=info:doi/10.1109/MPER.2001.4311625&rft_dat=%3Cproquest_RIE%3E1671277311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884787935&rft_id=info:pmid/&rft_ieee_id=4311625&rfr_iscdi=true