Evaluation of thermal energy storage and recovery for an electrical energy mediator system

Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation modelling practice and theory 2011-04, Vol.19 (4), p.1164-1174
Hauptverfasser: Bailey, J.M., Davidson, A.W., Smith, G.R., Cotton, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue 4
container_start_page 1164
container_title Simulation modelling practice and theory
container_volume 19
creator Bailey, J.M.
Davidson, A.W.
Smith, G.R.
Cotton, J.S.
description Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.
doi_str_mv 10.1016/j.simpat.2010.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671276459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X10000730</els_id><sourcerecordid>1671276459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYss3bQmbZo0G0GG8QEDbhTETUjT2zFD24xJZqD_3gwV3Lm593I458L5ELqhJKeE8rttHuyw0zEvSJIIywnhJ2hBa1FnlPHiNN0VlxmV5OMcXYSwJYTWNRcL9Lk66H6vo3Ujdh2OX-AH3WMYwW8mHKLzegNYjy32YNwB_IQ755OAoQcTvTV_7gFaq1MChylEGK7QWaf7ANe_-xK9P67els_Z-vXpZfmwzkxZyphxWprSkLJhGphoO6aJaau2kZWkDRUNEbwSQgrZ6SJ5ijQYp6LoGl4UQpLyEt3Of3fefe8hRDXYYKDv9QhuHxTlghaCs0omK5utxrsQPHRq5-2g_aQoUUeUaqtmlOqIUhGmEsoUu59jkGocLHgVjIXRpL6JSlSts_8_-AEGIX-r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671276459</pqid></control><display><type>article</type><title>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</title><source>Elsevier ScienceDirect Journals</source><creator>Bailey, J.M. ; Davidson, A.W. ; Smith, G.R. ; Cotton, J.S.</creator><creatorcontrib>Bailey, J.M. ; Davidson, A.W. ; Smith, G.R. ; Cotton, J.S.</creatorcontrib><description>Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2010.04.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cogeneration ; Cost engineering ; Efficiency ; Energy recovery ; Energy storage ; Estimates ; Melts ; Phase change materials ; Sizing ; Thermal energy ; Thermal energy storage ; Thermal storage</subject><ispartof>Simulation modelling practice and theory, 2011-04, Vol.19 (4), p.1164-1174</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</citedby><cites>FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1569190X10000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bailey, J.M.</creatorcontrib><creatorcontrib>Davidson, A.W.</creatorcontrib><creatorcontrib>Smith, G.R.</creatorcontrib><creatorcontrib>Cotton, J.S.</creatorcontrib><title>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</title><title>Simulation modelling practice and theory</title><description>Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.</description><subject>Cogeneration</subject><subject>Cost engineering</subject><subject>Efficiency</subject><subject>Energy recovery</subject><subject>Energy storage</subject><subject>Estimates</subject><subject>Melts</subject><subject>Phase change materials</subject><subject>Sizing</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal storage</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYss3bQmbZo0G0GG8QEDbhTETUjT2zFD24xJZqD_3gwV3Lm593I458L5ELqhJKeE8rttHuyw0zEvSJIIywnhJ2hBa1FnlPHiNN0VlxmV5OMcXYSwJYTWNRcL9Lk66H6vo3Ujdh2OX-AH3WMYwW8mHKLzegNYjy32YNwB_IQ755OAoQcTvTV_7gFaq1MChylEGK7QWaf7ANe_-xK9P67els_Z-vXpZfmwzkxZyphxWprSkLJhGphoO6aJaau2kZWkDRUNEbwSQgrZ6SJ5ijQYp6LoGl4UQpLyEt3Of3fefe8hRDXYYKDv9QhuHxTlghaCs0omK5utxrsQPHRq5-2g_aQoUUeUaqtmlOqIUhGmEsoUu59jkGocLHgVjIXRpL6JSlSts_8_-AEGIX-r</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Bailey, J.M.</creator><creator>Davidson, A.W.</creator><creator>Smith, G.R.</creator><creator>Cotton, J.S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</title><author>Bailey, J.M. ; Davidson, A.W. ; Smith, G.R. ; Cotton, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cogeneration</topic><topic>Cost engineering</topic><topic>Efficiency</topic><topic>Energy recovery</topic><topic>Energy storage</topic><topic>Estimates</topic><topic>Melts</topic><topic>Phase change materials</topic><topic>Sizing</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, J.M.</creatorcontrib><creatorcontrib>Davidson, A.W.</creatorcontrib><creatorcontrib>Smith, G.R.</creatorcontrib><creatorcontrib>Cotton, J.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, J.M.</au><au>Davidson, A.W.</au><au>Smith, G.R.</au><au>Cotton, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</atitle><jtitle>Simulation modelling practice and theory</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>1164</spage><epage>1174</epage><pages>1164-1174</pages><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpat.2010.04.006</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-190X
ispartof Simulation modelling practice and theory, 2011-04, Vol.19 (4), p.1164-1174
issn 1569-190X
1878-1462
language eng
recordid cdi_proquest_miscellaneous_1671276459
source Elsevier ScienceDirect Journals
subjects Cogeneration
Cost engineering
Efficiency
Energy recovery
Energy storage
Estimates
Melts
Phase change materials
Sizing
Thermal energy
Thermal energy storage
Thermal storage
title Evaluation of thermal energy storage and recovery for an electrical energy mediator system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20thermal%20energy%20storage%20and%20recovery%20for%20an%20electrical%20energy%20mediator%20system&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=Bailey,%20J.M.&rft.date=2011-04-01&rft.volume=19&rft.issue=4&rft.spage=1164&rft.epage=1174&rft.pages=1164-1174&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2010.04.006&rft_dat=%3Cproquest_cross%3E1671276459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671276459&rft_id=info:pmid/&rft_els_id=S1569190X10000730&rfr_iscdi=true