Evaluation of thermal energy storage and recovery for an electrical energy mediator system
Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energ...
Gespeichert in:
Veröffentlicht in: | Simulation modelling practice and theory 2011-04, Vol.19 (4), p.1164-1174 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 4 |
container_start_page | 1164 |
container_title | Simulation modelling practice and theory |
container_volume | 19 |
creator | Bailey, J.M. Davidson, A.W. Smith, G.R. Cotton, J.S. |
description | Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated. |
doi_str_mv | 10.1016/j.simpat.2010.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671276459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X10000730</els_id><sourcerecordid>1671276459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYss3bQmbZo0G0GG8QEDbhTETUjT2zFD24xJZqD_3gwV3Lm593I458L5ELqhJKeE8rttHuyw0zEvSJIIywnhJ2hBa1FnlPHiNN0VlxmV5OMcXYSwJYTWNRcL9Lk66H6vo3Ujdh2OX-AH3WMYwW8mHKLzegNYjy32YNwB_IQ755OAoQcTvTV_7gFaq1MChylEGK7QWaf7ANe_-xK9P67els_Z-vXpZfmwzkxZyphxWprSkLJhGphoO6aJaau2kZWkDRUNEbwSQgrZ6SJ5ijQYp6LoGl4UQpLyEt3Of3fefe8hRDXYYKDv9QhuHxTlghaCs0omK5utxrsQPHRq5-2g_aQoUUeUaqtmlOqIUhGmEsoUu59jkGocLHgVjIXRpL6JSlSts_8_-AEGIX-r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671276459</pqid></control><display><type>article</type><title>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</title><source>Elsevier ScienceDirect Journals</source><creator>Bailey, J.M. ; Davidson, A.W. ; Smith, G.R. ; Cotton, J.S.</creator><creatorcontrib>Bailey, J.M. ; Davidson, A.W. ; Smith, G.R. ; Cotton, J.S.</creatorcontrib><description>Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2010.04.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cogeneration ; Cost engineering ; Efficiency ; Energy recovery ; Energy storage ; Estimates ; Melts ; Phase change materials ; Sizing ; Thermal energy ; Thermal energy storage ; Thermal storage</subject><ispartof>Simulation modelling practice and theory, 2011-04, Vol.19 (4), p.1164-1174</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</citedby><cites>FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1569190X10000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bailey, J.M.</creatorcontrib><creatorcontrib>Davidson, A.W.</creatorcontrib><creatorcontrib>Smith, G.R.</creatorcontrib><creatorcontrib>Cotton, J.S.</creatorcontrib><title>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</title><title>Simulation modelling practice and theory</title><description>Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.</description><subject>Cogeneration</subject><subject>Cost engineering</subject><subject>Efficiency</subject><subject>Energy recovery</subject><subject>Energy storage</subject><subject>Estimates</subject><subject>Melts</subject><subject>Phase change materials</subject><subject>Sizing</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal storage</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYss3bQmbZo0G0GG8QEDbhTETUjT2zFD24xJZqD_3gwV3Lm593I458L5ELqhJKeE8rttHuyw0zEvSJIIywnhJ2hBa1FnlPHiNN0VlxmV5OMcXYSwJYTWNRcL9Lk66H6vo3Ujdh2OX-AH3WMYwW8mHKLzegNYjy32YNwB_IQ755OAoQcTvTV_7gFaq1MChylEGK7QWaf7ANe_-xK9P67els_Z-vXpZfmwzkxZyphxWprSkLJhGphoO6aJaau2kZWkDRUNEbwSQgrZ6SJ5ijQYp6LoGl4UQpLyEt3Of3fefe8hRDXYYKDv9QhuHxTlghaCs0omK5utxrsQPHRq5-2g_aQoUUeUaqtmlOqIUhGmEsoUu59jkGocLHgVjIXRpL6JSlSts_8_-AEGIX-r</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Bailey, J.M.</creator><creator>Davidson, A.W.</creator><creator>Smith, G.R.</creator><creator>Cotton, J.S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</title><author>Bailey, J.M. ; Davidson, A.W. ; Smith, G.R. ; Cotton, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-613c3c03b4ae47df4a0cd5db9591b17b076577979fa2b4a22b446172fb6227903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cogeneration</topic><topic>Cost engineering</topic><topic>Efficiency</topic><topic>Energy recovery</topic><topic>Energy storage</topic><topic>Estimates</topic><topic>Melts</topic><topic>Phase change materials</topic><topic>Sizing</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, J.M.</creatorcontrib><creatorcontrib>Davidson, A.W.</creatorcontrib><creatorcontrib>Smith, G.R.</creatorcontrib><creatorcontrib>Cotton, J.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, J.M.</au><au>Davidson, A.W.</au><au>Smith, G.R.</au><au>Cotton, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of thermal energy storage and recovery for an electrical energy mediator system</atitle><jtitle>Simulation modelling practice and theory</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>1164</spage><epage>1174</epage><pages>1164-1174</pages><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>Energy storage both electrical and thermal is a rapidly emerging field of interest toward the development of more sustainable energy systems. The inherent inefficiencies associate with electrical storage can be partially overcome when thermal storage that collects and storage the waste thermal energy for alternative uses is integrated. Consequently, thermal energy storage systems are an enabling technology that will allow increased energy efficiency of a community, permit load levelling to reduce peak electricity demand. In order to facilitate a technology evaluation, a sizing strategy is developed for a phase change material (PCM) thermal storage system that determines system requirements under given thermal energy capture and recovery cycles. The sizing process utilizes a simplified one-dimensional heat transfer model that estimates melt times for a phase change material thickness without detailed geometry information. This melt time estimate allows the proportion of phase change material to fluid routing materials to be calculated, giving an estimate of material cost for the thermal storage cell to determine economic feasibility. The model is compared to both experimental data and computational fluid dynamics models in order to determine its limitations. Through a specific example of hydrogen based distributed electrical energy mediator system, the utility of the sizing model in determining the estimated cost of thermal energy storage is demonstrated.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpat.2010.04.006</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-190X |
ispartof | Simulation modelling practice and theory, 2011-04, Vol.19 (4), p.1164-1174 |
issn | 1569-190X 1878-1462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671276459 |
source | Elsevier ScienceDirect Journals |
subjects | Cogeneration Cost engineering Efficiency Energy recovery Energy storage Estimates Melts Phase change materials Sizing Thermal energy Thermal energy storage Thermal storage |
title | Evaluation of thermal energy storage and recovery for an electrical energy mediator system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20thermal%20energy%20storage%20and%20recovery%20for%20an%20electrical%20energy%20mediator%20system&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=Bailey,%20J.M.&rft.date=2011-04-01&rft.volume=19&rft.issue=4&rft.spage=1164&rft.epage=1174&rft.pages=1164-1174&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2010.04.006&rft_dat=%3Cproquest_cross%3E1671276459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671276459&rft_id=info:pmid/&rft_els_id=S1569190X10000730&rfr_iscdi=true |