The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy

Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2003-05, Vol.91 (5), p.799-816
Hauptverfasser: Sidles, J.A., Garbini, J.L., Dougherty, W.M., Shih-Hui Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 5
container_start_page 799
container_title Proceedings of the IEEE
container_volume 91
creator Sidles, J.A.
Garbini, J.L.
Dougherty, W.M.
Shih-Hui Chao
description Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.
doi_str_mv 10.1109/JPROC.2003.811796
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671273668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1200131</ieee_id><sourcerecordid>901699291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</originalsourceid><addsrcrecordid>eNqF0U9rFDEYBvAgFrrWfoDiJXjRg7PNm-zkz1EWq5ZCS2nPIfs246bMJNNkBtlvb7YriB7sKYH8nhfyPoScAVsCMHN-eXN7vV5yxsRSAygjX5EFtK1uOG_la7JgDHRjOJhj8qaUR1ZhK8WClLutp9i7UgK6nrr4QJ9mF6d5oNPWp7yjqdvf8lBfB_cj-ikgjSkU_4n-DNOWunHsa3YKKRYaIi1jiFNOMWD5a9wQMKeCady9JUed64s__X2ekPuLL3frb83V9dfv689XDQrDpqaTrZYcjRIrKZHrB8E8bkAgdrjqlHLCdExLJv0KNnwjUBkvNaLQnYGN4-KEfDjMHXN6mn2Z7BAK-r530ae5WMNAGsMNVPnxvxKUYlxJ4OZlKhVwJaTUlb7_hz6mOcf6Zav1irccQFYEB7TfTsm-s2MOg8s7C8zuq7XP1dp9tfZQbc28O2SC9_6PrwQEiF9YNKBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884252116</pqid></control><display><type>article</type><title>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Sidles, J.A. ; Garbini, J.L. ; Dougherty, W.M. ; Shih-Hui Chao</creator><creatorcontrib>Sidles, J.A. ; Garbini, J.L. ; Dougherty, W.M. ; Shih-Hui Chao</creatorcontrib><description>Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2003.811796</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Closed-form solution ; Entanglement ; Exact solutions ; Fluctuation ; Fluctuations ; Magnetic analysis ; Magnetic force microscopy ; Magnetic noise ; Magnetoelectronics ; Mathematical analysis ; Mathematical models ; Maxwell equations ; Noise ; Physics ; Quantum computing ; Quantum mechanics ; Quantum theory ; Reservoirs ; Spintronics ; Studies ; Theorems</subject><ispartof>Proceedings of the IEEE, 2003-05, Vol.91 (5), p.799-816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</citedby><cites>FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1200131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1200131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sidles, J.A.</creatorcontrib><creatorcontrib>Garbini, J.L.</creatorcontrib><creatorcontrib>Dougherty, W.M.</creatorcontrib><creatorcontrib>Shih-Hui Chao</creatorcontrib><title>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.</description><subject>Closed-form solution</subject><subject>Entanglement</subject><subject>Exact solutions</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>Magnetic analysis</subject><subject>Magnetic force microscopy</subject><subject>Magnetic noise</subject><subject>Magnetoelectronics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>Noise</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Reservoirs</subject><subject>Spintronics</subject><subject>Studies</subject><subject>Theorems</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U9rFDEYBvAgFrrWfoDiJXjRg7PNm-zkz1EWq5ZCS2nPIfs246bMJNNkBtlvb7YriB7sKYH8nhfyPoScAVsCMHN-eXN7vV5yxsRSAygjX5EFtK1uOG_la7JgDHRjOJhj8qaUR1ZhK8WClLutp9i7UgK6nrr4QJ9mF6d5oNPWp7yjqdvf8lBfB_cj-ikgjSkU_4n-DNOWunHsa3YKKRYaIi1jiFNOMWD5a9wQMKeCady9JUed64s__X2ekPuLL3frb83V9dfv689XDQrDpqaTrZYcjRIrKZHrB8E8bkAgdrjqlHLCdExLJv0KNnwjUBkvNaLQnYGN4-KEfDjMHXN6mn2Z7BAK-r530ae5WMNAGsMNVPnxvxKUYlxJ4OZlKhVwJaTUlb7_hz6mOcf6Zav1irccQFYEB7TfTsm-s2MOg8s7C8zuq7XP1dp9tfZQbc28O2SC9_6PrwQEiF9YNKBw</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Sidles, J.A.</creator><creator>Garbini, J.L.</creator><creator>Dougherty, W.M.</creator><creator>Shih-Hui Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030501</creationdate><title>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</title><author>Sidles, J.A. ; Garbini, J.L. ; Dougherty, W.M. ; Shih-Hui Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Closed-form solution</topic><topic>Entanglement</topic><topic>Exact solutions</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>Magnetic analysis</topic><topic>Magnetic force microscopy</topic><topic>Magnetic noise</topic><topic>Magnetoelectronics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>Noise</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Reservoirs</topic><topic>Spintronics</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidles, J.A.</creatorcontrib><creatorcontrib>Garbini, J.L.</creatorcontrib><creatorcontrib>Dougherty, W.M.</creatorcontrib><creatorcontrib>Shih-Hui Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sidles, J.A.</au><au>Garbini, J.L.</au><au>Dougherty, W.M.</au><au>Shih-Hui Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2003-05-01</date><risdate>2003</risdate><volume>91</volume><issue>5</issue><spage>799</spage><epage>816</epage><pages>799-816</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2003.811796</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2003-05, Vol.91 (5), p.799-816
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_miscellaneous_1671273668
source IEEE Electronic Library (IEL)
subjects Closed-form solution
Entanglement
Exact solutions
Fluctuation
Fluctuations
Magnetic analysis
Magnetic force microscopy
Magnetic noise
Magnetoelectronics
Mathematical analysis
Mathematical models
Maxwell equations
Noise
Physics
Quantum computing
Quantum mechanics
Quantum theory
Reservoirs
Spintronics
Studies
Theorems
title The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20classical%20and%20quantum%20theory%20of%20thermal%20magnetic%20noise,%20with%20applications%20in%20spintronics%20and%20quantum%20microscopy&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Sidles,%20J.A.&rft.date=2003-05-01&rft.volume=91&rft.issue=5&rft.spage=799&rft.epage=816&rft.pages=799-816&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2003.811796&rft_dat=%3Cproquest_RIE%3E901699291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884252116&rft_id=info:pmid/&rft_ieee_id=1200131&rfr_iscdi=true