The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy
Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2003-05, Vol.91 (5), p.799-816 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 816 |
---|---|
container_issue | 5 |
container_start_page | 799 |
container_title | Proceedings of the IEEE |
container_volume | 91 |
creator | Sidles, J.A. Garbini, J.L. Dougherty, W.M. Shih-Hui Chao |
description | Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle. |
doi_str_mv | 10.1109/JPROC.2003.811796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671273668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1200131</ieee_id><sourcerecordid>901699291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</originalsourceid><addsrcrecordid>eNqF0U9rFDEYBvAgFrrWfoDiJXjRg7PNm-zkz1EWq5ZCS2nPIfs246bMJNNkBtlvb7YriB7sKYH8nhfyPoScAVsCMHN-eXN7vV5yxsRSAygjX5EFtK1uOG_la7JgDHRjOJhj8qaUR1ZhK8WClLutp9i7UgK6nrr4QJ9mF6d5oNPWp7yjqdvf8lBfB_cj-ikgjSkU_4n-DNOWunHsa3YKKRYaIi1jiFNOMWD5a9wQMKeCady9JUed64s__X2ekPuLL3frb83V9dfv689XDQrDpqaTrZYcjRIrKZHrB8E8bkAgdrjqlHLCdExLJv0KNnwjUBkvNaLQnYGN4-KEfDjMHXN6mn2Z7BAK-r530ae5WMNAGsMNVPnxvxKUYlxJ4OZlKhVwJaTUlb7_hz6mOcf6Zav1irccQFYEB7TfTsm-s2MOg8s7C8zuq7XP1dp9tfZQbc28O2SC9_6PrwQEiF9YNKBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884252116</pqid></control><display><type>article</type><title>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Sidles, J.A. ; Garbini, J.L. ; Dougherty, W.M. ; Shih-Hui Chao</creator><creatorcontrib>Sidles, J.A. ; Garbini, J.L. ; Dougherty, W.M. ; Shih-Hui Chao</creatorcontrib><description>Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2003.811796</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Closed-form solution ; Entanglement ; Exact solutions ; Fluctuation ; Fluctuations ; Magnetic analysis ; Magnetic force microscopy ; Magnetic noise ; Magnetoelectronics ; Mathematical analysis ; Mathematical models ; Maxwell equations ; Noise ; Physics ; Quantum computing ; Quantum mechanics ; Quantum theory ; Reservoirs ; Spintronics ; Studies ; Theorems</subject><ispartof>Proceedings of the IEEE, 2003-05, Vol.91 (5), p.799-816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</citedby><cites>FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1200131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1200131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sidles, J.A.</creatorcontrib><creatorcontrib>Garbini, J.L.</creatorcontrib><creatorcontrib>Dougherty, W.M.</creatorcontrib><creatorcontrib>Shih-Hui Chao</creatorcontrib><title>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.</description><subject>Closed-form solution</subject><subject>Entanglement</subject><subject>Exact solutions</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>Magnetic analysis</subject><subject>Magnetic force microscopy</subject><subject>Magnetic noise</subject><subject>Magnetoelectronics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>Noise</subject><subject>Physics</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Reservoirs</subject><subject>Spintronics</subject><subject>Studies</subject><subject>Theorems</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U9rFDEYBvAgFrrWfoDiJXjRg7PNm-zkz1EWq5ZCS2nPIfs246bMJNNkBtlvb7YriB7sKYH8nhfyPoScAVsCMHN-eXN7vV5yxsRSAygjX5EFtK1uOG_la7JgDHRjOJhj8qaUR1ZhK8WClLutp9i7UgK6nrr4QJ9mF6d5oNPWp7yjqdvf8lBfB_cj-ikgjSkU_4n-DNOWunHsa3YKKRYaIi1jiFNOMWD5a9wQMKeCady9JUed64s__X2ekPuLL3frb83V9dfv689XDQrDpqaTrZYcjRIrKZHrB8E8bkAgdrjqlHLCdExLJv0KNnwjUBkvNaLQnYGN4-KEfDjMHXN6mn2Z7BAK-r530ae5WMNAGsMNVPnxvxKUYlxJ4OZlKhVwJaTUlb7_hz6mOcf6Zav1irccQFYEB7TfTsm-s2MOg8s7C8zuq7XP1dp9tfZQbc28O2SC9_6PrwQEiF9YNKBw</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Sidles, J.A.</creator><creator>Garbini, J.L.</creator><creator>Dougherty, W.M.</creator><creator>Shih-Hui Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030501</creationdate><title>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</title><author>Sidles, J.A. ; Garbini, J.L. ; Dougherty, W.M. ; Shih-Hui Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f65862c973466c28d30ecb13ccfc4f77a39f08606e41b2b3c79e68cc38f91ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Closed-form solution</topic><topic>Entanglement</topic><topic>Exact solutions</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>Magnetic analysis</topic><topic>Magnetic force microscopy</topic><topic>Magnetic noise</topic><topic>Magnetoelectronics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>Noise</topic><topic>Physics</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Reservoirs</topic><topic>Spintronics</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidles, J.A.</creatorcontrib><creatorcontrib>Garbini, J.L.</creatorcontrib><creatorcontrib>Dougherty, W.M.</creatorcontrib><creatorcontrib>Shih-Hui Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sidles, J.A.</au><au>Garbini, J.L.</au><au>Dougherty, W.M.</au><au>Shih-Hui Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2003-05-01</date><risdate>2003</risdate><volume>91</volume><issue>5</issue><spage>799</spage><epage>816</epage><pages>799-816</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Thermal fluctuations generate magnetic noise in the vicinity of any conductive and/or magnetically permeable solid. This magnetic noise plays a fundamental role in the design of spintronic devices: namely, it sets the time scale during which electron spins retain their coherence. This paper presents a rigorous classical and quantum analysis of thermal magnetic noise, together with practical engineering examples. Starting with the fluctuation-dissipation theorem and Maxwell's equations, a closed-form expression for the spectral density of thermal magnetic noise is derived. Quantum decoherence, as induced by thermal magnetic noise, is analyzed via the independent oscillator heat bath model of Ford et al. The resulting quantum Langevin equations yield closed-form expressions for the spin relaxation times. For realistic experiments in spintronics, magnetic resonance force microscopy, Bose-Einstein condensates, atomic physics, and solid-state quantum computing, the predicted relaxation rates are rapid enough that substantial experimental care must be taken to minimize them. At zero temperature, the quantum entanglement between a spin state and a thermal reservoir is computed. The same Hamiltonian matrix elements that govern fluctuation and dissipation are shown to also govern entanglement and renormalization, and a specific example of a fluctuation-dissipation-entanglement theorem is constructed. We postulate that this theorem is independent of the detailed structure of thermal reservoirs, and therefore expresses a general thermodynamic principle.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2003.811796</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2003-05, Vol.91 (5), p.799-816 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671273668 |
source | IEEE Electronic Library (IEL) |
subjects | Closed-form solution Entanglement Exact solutions Fluctuation Fluctuations Magnetic analysis Magnetic force microscopy Magnetic noise Magnetoelectronics Mathematical analysis Mathematical models Maxwell equations Noise Physics Quantum computing Quantum mechanics Quantum theory Reservoirs Spintronics Studies Theorems |
title | The classical and quantum theory of thermal magnetic noise, with applications in spintronics and quantum microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20classical%20and%20quantum%20theory%20of%20thermal%20magnetic%20noise,%20with%20applications%20in%20spintronics%20and%20quantum%20microscopy&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Sidles,%20J.A.&rft.date=2003-05-01&rft.volume=91&rft.issue=5&rft.spage=799&rft.epage=816&rft.pages=799-816&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2003.811796&rft_dat=%3Cproquest_RIE%3E901699291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884252116&rft_id=info:pmid/&rft_ieee_id=1200131&rfr_iscdi=true |