Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of heat and fluid flow 2011-10, Vol.32 (5), p.1047-1056
Hauptverfasser: Höhne, Thomas, Deendarlianto, Lucas, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 5
container_start_page 1047
container_title The International journal of heat and fluid flow
container_volume 32
creator Höhne, Thomas
Deendarlianto
Lucas, Dirk
description In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.
doi_str_mv 10.1016/j.ijheatfluidflow.2011.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671268062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X11000786</els_id><sourcerecordid>1671268062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</originalsourceid><addsrcrecordid>eNqNkEFv1DAUhCNEJZaW_-BLJS4JtpM4yYEDqqAgVQVVRXCzXuznrleOvdhOS6_88nq1FQdOnN5hvpnRm6o6Z7RhlIl3u8butgjZuNVq48JDwyljDe0bSocX1YaNw1RzPowvqw1lHa8HPvx8Vb1OaUcpFbQbNtWf63XBaBU4kuyyOsg2-ESCISqsPmOs1Roj-kzyQ6j3W0hIDlUEf--LbylKItYTIN9-3JBtyMThHVmCRkfWZP0dAV_0EmRA2dICEYFo9MnmxyN3Vp0YcAnfPN_T6vunj7cXn-urr5dfLj5c1aqdRK6HCagWegZjeD-PE5sM6JZpzbVSPZva1rC5hZYJoeaiUjVDy3lxzGzkpm1Pq7fH3H0Mv1ZMWS42KXQOPIY1SSYGxsVIBS_o-yOqYkgpopH78ivER8moPGwvd_Kf7eVhe0l7WbYv_vPnKkhlWhPBK5v-hvCu77qe0sJdHjksf99bjDIpi16hthFVljrY_2x8ApFxp0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671268062</pqid></control><display><type>article</type><title>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</title><source>Elsevier ScienceDirect Journals</source><creator>Höhne, Thomas ; Deendarlianto ; Lucas, Dirk</creator><creatorcontrib>Höhne, Thomas ; Deendarlianto ; Lucas, Dirk</creatorcontrib><description>In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2011.05.007</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>AIAD model ; Air–water experiment ; Applied sciences ; CCFL ; CFD ; Computational fluid dynamics ; Computer simulation ; Correlation ; Density ; Drag ; Droplets ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Numerical simulation ; Pressurized water reactors ; PWR hot leg ; Reflux condensation</subject><ispartof>The International journal of heat and fluid flow, 2011-10, Vol.32 (5), p.1047-1056</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</citedby><cites>FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X11000786$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24544500$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Höhne, Thomas</creatorcontrib><creatorcontrib>Deendarlianto</creatorcontrib><creatorcontrib>Lucas, Dirk</creatorcontrib><title>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</title><title>The International journal of heat and fluid flow</title><description>In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.</description><subject>AIAD model</subject><subject>Air–water experiment</subject><subject>Applied sciences</subject><subject>CCFL</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Density</subject><subject>Drag</subject><subject>Droplets</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Pressurized water reactors</subject><subject>PWR hot leg</subject><subject>Reflux condensation</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEFv1DAUhCNEJZaW_-BLJS4JtpM4yYEDqqAgVQVVRXCzXuznrleOvdhOS6_88nq1FQdOnN5hvpnRm6o6Z7RhlIl3u8butgjZuNVq48JDwyljDe0bSocX1YaNw1RzPowvqw1lHa8HPvx8Vb1OaUcpFbQbNtWf63XBaBU4kuyyOsg2-ESCISqsPmOs1Roj-kzyQ6j3W0hIDlUEf--LbylKItYTIN9-3JBtyMThHVmCRkfWZP0dAV_0EmRA2dICEYFo9MnmxyN3Vp0YcAnfPN_T6vunj7cXn-urr5dfLj5c1aqdRK6HCagWegZjeD-PE5sM6JZpzbVSPZva1rC5hZYJoeaiUjVDy3lxzGzkpm1Pq7fH3H0Mv1ZMWS42KXQOPIY1SSYGxsVIBS_o-yOqYkgpopH78ivER8moPGwvd_Kf7eVhe0l7WbYv_vPnKkhlWhPBK5v-hvCu77qe0sJdHjksf99bjDIpi16hthFVljrY_2x8ApFxp0c</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Höhne, Thomas</creator><creator>Deendarlianto</creator><creator>Lucas, Dirk</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</title><author>Höhne, Thomas ; Deendarlianto ; Lucas, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>AIAD model</topic><topic>Air–water experiment</topic><topic>Applied sciences</topic><topic>CCFL</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Density</topic><topic>Drag</topic><topic>Droplets</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Pressurized water reactors</topic><topic>PWR hot leg</topic><topic>Reflux condensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höhne, Thomas</creatorcontrib><creatorcontrib>Deendarlianto</creatorcontrib><creatorcontrib>Lucas, Dirk</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höhne, Thomas</au><au>Deendarlianto</au><au>Lucas, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>32</volume><issue>5</issue><spage>1047</spage><epage>1056</epage><pages>1047-1056</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2011.05.007</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-727X
ispartof The International journal of heat and fluid flow, 2011-10, Vol.32 (5), p.1047-1056
issn 0142-727X
1879-2278
language eng
recordid cdi_proquest_miscellaneous_1671268062
source Elsevier ScienceDirect Journals
subjects AIAD model
Air–water experiment
Applied sciences
CCFL
CFD
Computational fluid dynamics
Computer simulation
Correlation
Density
Drag
Droplets
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Installations for energy generation and conversion: thermal and electrical energy
Mathematical models
Numerical simulation
Pressurized water reactors
PWR hot leg
Reflux condensation
title Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20counter-current%20two-phase%20flow%20experiments%20in%20a%20PWR%20hot%20leg%20model%20using%20an%20interfacial%20area%20density%20model&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=H%C3%B6hne,%20Thomas&rft.date=2011-10-01&rft.volume=32&rft.issue=5&rft.spage=1047&rft.epage=1056&rft.pages=1047-1056&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2011.05.007&rft_dat=%3Cproquest_cross%3E1671268062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671268062&rft_id=info:pmid/&rft_els_id=S0142727X11000786&rfr_iscdi=true