Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model
In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the He...
Gespeichert in:
Veröffentlicht in: | The International journal of heat and fluid flow 2011-10, Vol.32 (5), p.1047-1056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1056 |
---|---|
container_issue | 5 |
container_start_page | 1047 |
container_title | The International journal of heat and fluid flow |
container_volume | 32 |
creator | Höhne, Thomas Deendarlianto Lucas, Dirk |
description | In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations. |
doi_str_mv | 10.1016/j.ijheatfluidflow.2011.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671268062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X11000786</els_id><sourcerecordid>1671268062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</originalsourceid><addsrcrecordid>eNqNkEFv1DAUhCNEJZaW_-BLJS4JtpM4yYEDqqAgVQVVRXCzXuznrleOvdhOS6_88nq1FQdOnN5hvpnRm6o6Z7RhlIl3u8butgjZuNVq48JDwyljDe0bSocX1YaNw1RzPowvqw1lHa8HPvx8Vb1OaUcpFbQbNtWf63XBaBU4kuyyOsg2-ESCISqsPmOs1Roj-kzyQ6j3W0hIDlUEf--LbylKItYTIN9-3JBtyMThHVmCRkfWZP0dAV_0EmRA2dICEYFo9MnmxyN3Vp0YcAnfPN_T6vunj7cXn-urr5dfLj5c1aqdRK6HCagWegZjeD-PE5sM6JZpzbVSPZva1rC5hZYJoeaiUjVDy3lxzGzkpm1Pq7fH3H0Mv1ZMWS42KXQOPIY1SSYGxsVIBS_o-yOqYkgpopH78ivER8moPGwvd_Kf7eVhe0l7WbYv_vPnKkhlWhPBK5v-hvCu77qe0sJdHjksf99bjDIpi16hthFVljrY_2x8ApFxp0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671268062</pqid></control><display><type>article</type><title>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</title><source>Elsevier ScienceDirect Journals</source><creator>Höhne, Thomas ; Deendarlianto ; Lucas, Dirk</creator><creatorcontrib>Höhne, Thomas ; Deendarlianto ; Lucas, Dirk</creatorcontrib><description>In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2011.05.007</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>AIAD model ; Air–water experiment ; Applied sciences ; CCFL ; CFD ; Computational fluid dynamics ; Computer simulation ; Correlation ; Density ; Drag ; Droplets ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Numerical simulation ; Pressurized water reactors ; PWR hot leg ; Reflux condensation</subject><ispartof>The International journal of heat and fluid flow, 2011-10, Vol.32 (5), p.1047-1056</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</citedby><cites>FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X11000786$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24544500$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Höhne, Thomas</creatorcontrib><creatorcontrib>Deendarlianto</creatorcontrib><creatorcontrib>Lucas, Dirk</creatorcontrib><title>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</title><title>The International journal of heat and fluid flow</title><description>In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.</description><subject>AIAD model</subject><subject>Air–water experiment</subject><subject>Applied sciences</subject><subject>CCFL</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Density</subject><subject>Drag</subject><subject>Droplets</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Pressurized water reactors</subject><subject>PWR hot leg</subject><subject>Reflux condensation</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEFv1DAUhCNEJZaW_-BLJS4JtpM4yYEDqqAgVQVVRXCzXuznrleOvdhOS6_88nq1FQdOnN5hvpnRm6o6Z7RhlIl3u8butgjZuNVq48JDwyljDe0bSocX1YaNw1RzPowvqw1lHa8HPvx8Vb1OaUcpFbQbNtWf63XBaBU4kuyyOsg2-ESCISqsPmOs1Roj-kzyQ6j3W0hIDlUEf--LbylKItYTIN9-3JBtyMThHVmCRkfWZP0dAV_0EmRA2dICEYFo9MnmxyN3Vp0YcAnfPN_T6vunj7cXn-urr5dfLj5c1aqdRK6HCagWegZjeD-PE5sM6JZpzbVSPZva1rC5hZYJoeaiUjVDy3lxzGzkpm1Pq7fH3H0Mv1ZMWS42KXQOPIY1SSYGxsVIBS_o-yOqYkgpopH78ivER8moPGwvd_Kf7eVhe0l7WbYv_vPnKkhlWhPBK5v-hvCu77qe0sJdHjksf99bjDIpi16hthFVljrY_2x8ApFxp0c</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Höhne, Thomas</creator><creator>Deendarlianto</creator><creator>Lucas, Dirk</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</title><author>Höhne, Thomas ; Deendarlianto ; Lucas, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-79a0d6dbaff25b8919fad31dd2dcc51933f1b3a3166cb9190cba3226dbb182f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>AIAD model</topic><topic>Air–water experiment</topic><topic>Applied sciences</topic><topic>CCFL</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Density</topic><topic>Drag</topic><topic>Droplets</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Pressurized water reactors</topic><topic>PWR hot leg</topic><topic>Reflux condensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höhne, Thomas</creatorcontrib><creatorcontrib>Deendarlianto</creatorcontrib><creatorcontrib>Lucas, Dirk</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höhne, Thomas</au><au>Deendarlianto</au><au>Lucas, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>32</volume><issue>5</issue><spage>1047</spage><epage>1056</epage><pages>1047-1056</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2011.05.007</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-727X |
ispartof | The International journal of heat and fluid flow, 2011-10, Vol.32 (5), p.1047-1056 |
issn | 0142-727X 1879-2278 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671268062 |
source | Elsevier ScienceDirect Journals |
subjects | AIAD model Air–water experiment Applied sciences CCFL CFD Computational fluid dynamics Computer simulation Correlation Density Drag Droplets Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Installations for energy generation and conversion: thermal and electrical energy Mathematical models Numerical simulation Pressurized water reactors PWR hot leg Reflux condensation |
title | Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20counter-current%20two-phase%20flow%20experiments%20in%20a%20PWR%20hot%20leg%20model%20using%20an%20interfacial%20area%20density%20model&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=H%C3%B6hne,%20Thomas&rft.date=2011-10-01&rft.volume=32&rft.issue=5&rft.spage=1047&rft.epage=1056&rft.pages=1047-1056&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2011.05.007&rft_dat=%3Cproquest_cross%3E1671268062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671268062&rft_id=info:pmid/&rft_els_id=S0142727X11000786&rfr_iscdi=true |