Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System
This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems, i.e., both their topologies and parameters. Hybrid bond graphs (HBGs) are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2012-06, Vol.16 (3), p.391-405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 3 |
container_start_page | 391 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 16 |
creator | Dupuis, J. Zhun Fan Goodman, E. D. |
description | This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems, i.e., both their topologies and parameters. Hybrid bond graphs (HBGs) are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some special mechanisms incorporated, is used as a search tool to explore the open-ended design space of hybrid bond graphs. Combination of these two tools, i.e., HBGs and genetic programming, leads to an approach called HBGGP that can automatically generate viable design candidates of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research directions pointed out. |
doi_str_mv | 10.1109/TEVC.2011.2159724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671266771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6045329</ieee_id><sourcerecordid>1671266771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-92be58ccfdb3a4c4e5792bcbec329e671d99eafb0957e1e465cf6a773f84bc5d3</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhosoeH0AcRMQwU3HnDaXZqnjeAFB0VHclTQ91UjbjElHmLc3ZQYXrhKS7_8550uSY6ATAKou5rO36SSjAJMMuJIZ20r2QDFIKc3EdrzTQqVSFu-7yX4IX5QC46D2kufZj2uXg3W99ityjcF-9MQ15MoNn2TuFq51HxYD0X1NnrTXHQ7ow0hocreqvK3J9arXnTW6JS-rMGB3mOw0ug14tDkPkteb2Xx6lz483t5PLx9Sk3MxpCqrkBfGNHWVa2YYchmfTIUmzxQKCbVSqJuKKi4RkAluGqGlzJuCVYbX-UFyvu5dePe9xDCUnQ0G21b36JahhNiRCSElRPT0H_rllr6P05VAQSqWF2KkYE0Z70Lw2JQLb7voJULlaLkcLZej5XJjOWbONs06RAWN172x4S-YCUolL0buZM1ZRPz7FpTxuG3-C3oRhac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017943861</pqid></control><display><type>article</type><title>Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Dupuis, J. ; Zhun Fan ; Goodman, E. D.</creator><creatorcontrib>Dupuis, J. ; Zhun Fan ; Goodman, E. D.</creatorcontrib><description>This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems, i.e., both their topologies and parameters. Hybrid bond graphs (HBGs) are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some special mechanisms incorporated, is used as a search tool to explore the open-ended design space of hybrid bond graphs. Combination of these two tools, i.e., HBGs and genetic programming, leads to an approach called HBGGP that can automatically generate viable design candidates of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research directions pointed out.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2011.2159724</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Automated design ; bond graphs ; Computer science; control theory; systems ; Control theory. Systems ; Convertors ; Design engineering ; Dynamical systems ; Electrical engineering. Electrical power engineering ; Electrical machines ; Embryo ; Encoding ; Evolutionary ; evolutionary design ; Evolutionary design method ; Exact sciences and technology ; Genetic programming ; Genetics ; hybrid mechatronic systems ; Junctions ; Mechatronics ; Modelling and identification ; Programming ; Switches ; Topology</subject><ispartof>IEEE transactions on evolutionary computation, 2012-06, Vol.16 (3), p.391-405</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-92be58ccfdb3a4c4e5792bcbec329e671d99eafb0957e1e465cf6a773f84bc5d3</citedby><cites>FETCH-LOGICAL-c356t-92be58ccfdb3a4c4e5792bcbec329e671d99eafb0957e1e465cf6a773f84bc5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6045329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6045329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26007584$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dupuis, J.</creatorcontrib><creatorcontrib>Zhun Fan</creatorcontrib><creatorcontrib>Goodman, E. D.</creatorcontrib><title>Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems, i.e., both their topologies and parameters. Hybrid bond graphs (HBGs) are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some special mechanisms incorporated, is used as a search tool to explore the open-ended design space of hybrid bond graphs. Combination of these two tools, i.e., HBGs and genetic programming, leads to an approach called HBGGP that can automatically generate viable design candidates of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research directions pointed out.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automated design</subject><subject>bond graphs</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convertors</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Embryo</subject><subject>Encoding</subject><subject>Evolutionary</subject><subject>evolutionary design</subject><subject>Evolutionary design method</subject><subject>Exact sciences and technology</subject><subject>Genetic programming</subject><subject>Genetics</subject><subject>hybrid mechatronic systems</subject><subject>Junctions</subject><subject>Mechatronics</subject><subject>Modelling and identification</subject><subject>Programming</subject><subject>Switches</subject><subject>Topology</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKxDAUhosoeH0AcRMQwU3HnDaXZqnjeAFB0VHclTQ91UjbjElHmLc3ZQYXrhKS7_8550uSY6ATAKou5rO36SSjAJMMuJIZ20r2QDFIKc3EdrzTQqVSFu-7yX4IX5QC46D2kufZj2uXg3W99ityjcF-9MQ15MoNn2TuFq51HxYD0X1NnrTXHQ7ow0hocreqvK3J9arXnTW6JS-rMGB3mOw0ug14tDkPkteb2Xx6lz483t5PLx9Sk3MxpCqrkBfGNHWVa2YYchmfTIUmzxQKCbVSqJuKKi4RkAluGqGlzJuCVYbX-UFyvu5dePe9xDCUnQ0G21b36JahhNiRCSElRPT0H_rllr6P05VAQSqWF2KkYE0Z70Lw2JQLb7voJULlaLkcLZej5XJjOWbONs06RAWN172x4S-YCUolL0buZM1ZRPz7FpTxuG3-C3oRhac</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Dupuis, J.</creator><creator>Zhun Fan</creator><creator>Goodman, E. D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120601</creationdate><title>Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System</title><author>Dupuis, J. ; Zhun Fan ; Goodman, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-92be58ccfdb3a4c4e5792bcbec329e671d99eafb0957e1e465cf6a773f84bc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automated design</topic><topic>bond graphs</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convertors</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Embryo</topic><topic>Encoding</topic><topic>Evolutionary</topic><topic>evolutionary design</topic><topic>Evolutionary design method</topic><topic>Exact sciences and technology</topic><topic>Genetic programming</topic><topic>Genetics</topic><topic>hybrid mechatronic systems</topic><topic>Junctions</topic><topic>Mechatronics</topic><topic>Modelling and identification</topic><topic>Programming</topic><topic>Switches</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupuis, J.</creatorcontrib><creatorcontrib>Zhun Fan</creatorcontrib><creatorcontrib>Goodman, E. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dupuis, J.</au><au>Zhun Fan</au><au>Goodman, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>16</volume><issue>3</issue><spage>391</spage><epage>405</epage><pages>391-405</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems, i.e., both their topologies and parameters. Hybrid bond graphs (HBGs) are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some special mechanisms incorporated, is used as a search tool to explore the open-ended design space of hybrid bond graphs. Combination of these two tools, i.e., HBGs and genetic programming, leads to an approach called HBGGP that can automatically generate viable design candidates of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research directions pointed out.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2011.2159724</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2012-06, Vol.16 (3), p.391-405 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671266771 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Automated design bond graphs Computer science control theory systems Control theory. Systems Convertors Design engineering Dynamical systems Electrical engineering. Electrical power engineering Electrical machines Embryo Encoding Evolutionary evolutionary design Evolutionary design method Exact sciences and technology Genetic programming Genetics hybrid mechatronic systems Junctions Mechatronics Modelling and identification Programming Switches Topology |
title | Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Design%20of%20Both%20Topologies%20and%20Parameters%20of%20a%20Hybrid%20Dynamical%20System&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Dupuis,%20J.&rft.date=2012-06-01&rft.volume=16&rft.issue=3&rft.spage=391&rft.epage=405&rft.pages=391-405&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2011.2159724&rft_dat=%3Cproquest_RIE%3E1671266771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017943861&rft_id=info:pmid/&rft_ieee_id=6045329&rfr_iscdi=true |