Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications

Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native SiySiHx terminated pSi surface is highly reactive and prone to spontaneous o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in colloid and interface science 2012-07, Vol.175, p.25-38
Hauptverfasser: Jarvis, Karyn L., Barnes, Timothy J., Prestidge, Clive A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 25
container_title Advances in colloid and interface science
container_volume 175
creator Jarvis, Karyn L.
Barnes, Timothy J.
Prestidge, Clive A.
description Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native SiySiHx terminated pSi surface is highly reactive and prone to spontaneous oxidation. Surface modification is used to stabilize the pSi surface but also to produce surfaces with desired drug delivery behavior, typically via oxidation, hydrosilylation or thermal carbonization. A number of advanced characterization techniques have been used to analyze pSi surface chemistry, including X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification not only stabilizes the pSi surface but determines its charge, wettability and dissolution properties. Manipulation of these parameters can impact drug encapsulation by altering drug–pSi interactions. pSi has shown to be a successful vehicle for the delivery of poorly soluble drugs and protein therapeutics. Surface modification influences drug pore penetration, crystallinity, loading level and dissolution rate. Surface modification of pSi shows great potential for drug delivery applications by controlling pSi–drug interactions. Controlling these interactions allows specific drug release behaviors to be engineered to aid in the delivery of previously challenging therapeutics. Within this review, different pSi modification techniques will be outlined followed by a summary of how pSi surface modification has been used to improve drug encapsulation and delivery. [Display omitted] ► Porous silicon (pSi) has significant potential as a drug delivery vehicle. ► The hydride terminated surface can be passivated via oxidation and hydrosilylation. ► Surface modification can be used to tailor drug–pSi interactions. ► By controlling drug crystallinity within pSi pores, drug dissolution is enhanced. ► Techniques such as XPS and ToF-SIMS provide insight into modification and loading.
doi_str_mv 10.1016/j.cis.2012.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671266504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001868612000498</els_id><sourcerecordid>1011541927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-a5bc61f41d20fea90ed09250867cc6f857b46676a1bcf577b3e0cd4cf6a159223</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhA3BBviBxSfDYsZ2IE6rKH6kSB-BsOfYYvMrGwU4q9dvj7S7lBidrRr_35HmPkJfAWmCg3u5bF0vLGfCWiZYx9YjsoNeiEZrrx2THGIOmV726IM9K2deRSy2fkgvOJQcu-h3Br1sO1iF1P_EQy5rvaAp0STlthZY4RZdmamdP42Gpg11jmgsNKVOftx8UZ2eXsk33-3vO4xRvsdrY5a_gOXkS7FTwxfm9JN8_XH-7-tTcfPn4-er9TeM6KdbGytEpCB14zgLagaFnA5esV9o5FXqpx04prSyMLkitR4HM-c6FupED5-KSvDn5Ljn92rCspt7kcJrsjPUgA0oDV0qy7v8oA5AdDFxXFE6oy6mUjMEsOR5svqvQkVNmb2oR5liEYcLUIqrm1dl-Gw_oHxR_kq_A6zNgi7NTyHY-ejxwcoCh56Jy704c1txuI2ZTXKyxo48Z3Wp8iv_4xm9CfqbZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011541927</pqid></control><display><type>article</type><title>Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jarvis, Karyn L. ; Barnes, Timothy J. ; Prestidge, Clive A.</creator><creatorcontrib>Jarvis, Karyn L. ; Barnes, Timothy J. ; Prestidge, Clive A.</creatorcontrib><description>Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native SiySiHx terminated pSi surface is highly reactive and prone to spontaneous oxidation. Surface modification is used to stabilize the pSi surface but also to produce surfaces with desired drug delivery behavior, typically via oxidation, hydrosilylation or thermal carbonization. A number of advanced characterization techniques have been used to analyze pSi surface chemistry, including X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification not only stabilizes the pSi surface but determines its charge, wettability and dissolution properties. Manipulation of these parameters can impact drug encapsulation by altering drug–pSi interactions. pSi has shown to be a successful vehicle for the delivery of poorly soluble drugs and protein therapeutics. Surface modification influences drug pore penetration, crystallinity, loading level and dissolution rate. Surface modification of pSi shows great potential for drug delivery applications by controlling pSi–drug interactions. Controlling these interactions allows specific drug release behaviors to be engineered to aid in the delivery of previously challenging therapeutics. Within this review, different pSi modification techniques will be outlined followed by a summary of how pSi surface modification has been used to improve drug encapsulation and delivery. [Display omitted] ► Porous silicon (pSi) has significant potential as a drug delivery vehicle. ► The hydride terminated surface can be passivated via oxidation and hydrosilylation. ► Surface modification can be used to tailor drug–pSi interactions. ► By controlling drug crystallinity within pSi pores, drug dissolution is enhanced. ► Techniques such as XPS and ToF-SIMS provide insight into modification and loading.</description><identifier>ISSN: 0001-8686</identifier><identifier>EISSN: 1873-3727</identifier><identifier>DOI: 10.1016/j.cis.2012.03.006</identifier><identifier>PMID: 22521238</identifier><identifier>CODEN: ACISB9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemistry ; Colloidal state and disperse state ; Dissolution ; Drug Compounding ; Drug delivery ; Drug Delivery Systems ; Drug loading ; Drugs ; Encapsulation ; Exact sciences and technology ; General and physical chemistry ; Oxidation ; Porosity ; Porous materials ; Porous silicon ; Silicon - chemistry ; Surface chemistry ; Surface modification ; Surface Properties ; Vehicles</subject><ispartof>Advances in colloid and interface science, 2012-07, Vol.175, p.25-38</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><rights>Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-a5bc61f41d20fea90ed09250867cc6f857b46676a1bcf577b3e0cd4cf6a159223</citedby><cites>FETCH-LOGICAL-c453t-a5bc61f41d20fea90ed09250867cc6f857b46676a1bcf577b3e0cd4cf6a159223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001868612000498$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25919823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22521238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarvis, Karyn L.</creatorcontrib><creatorcontrib>Barnes, Timothy J.</creatorcontrib><creatorcontrib>Prestidge, Clive A.</creatorcontrib><title>Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications</title><title>Advances in colloid and interface science</title><addtitle>Adv Colloid Interface Sci</addtitle><description>Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native SiySiHx terminated pSi surface is highly reactive and prone to spontaneous oxidation. Surface modification is used to stabilize the pSi surface but also to produce surfaces with desired drug delivery behavior, typically via oxidation, hydrosilylation or thermal carbonization. A number of advanced characterization techniques have been used to analyze pSi surface chemistry, including X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification not only stabilizes the pSi surface but determines its charge, wettability and dissolution properties. Manipulation of these parameters can impact drug encapsulation by altering drug–pSi interactions. pSi has shown to be a successful vehicle for the delivery of poorly soluble drugs and protein therapeutics. Surface modification influences drug pore penetration, crystallinity, loading level and dissolution rate. Surface modification of pSi shows great potential for drug delivery applications by controlling pSi–drug interactions. Controlling these interactions allows specific drug release behaviors to be engineered to aid in the delivery of previously challenging therapeutics. Within this review, different pSi modification techniques will be outlined followed by a summary of how pSi surface modification has been used to improve drug encapsulation and delivery. [Display omitted] ► Porous silicon (pSi) has significant potential as a drug delivery vehicle. ► The hydride terminated surface can be passivated via oxidation and hydrosilylation. ► Surface modification can be used to tailor drug–pSi interactions. ► By controlling drug crystallinity within pSi pores, drug dissolution is enhanced. ► Techniques such as XPS and ToF-SIMS provide insight into modification and loading.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Dissolution</subject><subject>Drug Compounding</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug loading</subject><subject>Drugs</subject><subject>Encapsulation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Oxidation</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous silicon</subject><subject>Silicon - chemistry</subject><subject>Surface chemistry</subject><subject>Surface modification</subject><subject>Surface Properties</subject><subject>Vehicles</subject><issn>0001-8686</issn><issn>1873-3727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhA3BBviBxSfDYsZ2IE6rKH6kSB-BsOfYYvMrGwU4q9dvj7S7lBidrRr_35HmPkJfAWmCg3u5bF0vLGfCWiZYx9YjsoNeiEZrrx2THGIOmV726IM9K2deRSy2fkgvOJQcu-h3Br1sO1iF1P_EQy5rvaAp0STlthZY4RZdmamdP42Gpg11jmgsNKVOftx8UZ2eXsk33-3vO4xRvsdrY5a_gOXkS7FTwxfm9JN8_XH-7-tTcfPn4-er9TeM6KdbGytEpCB14zgLagaFnA5esV9o5FXqpx04prSyMLkitR4HM-c6FupED5-KSvDn5Ljn92rCspt7kcJrsjPUgA0oDV0qy7v8oA5AdDFxXFE6oy6mUjMEsOR5svqvQkVNmb2oR5liEYcLUIqrm1dl-Gw_oHxR_kq_A6zNgi7NTyHY-ejxwcoCh56Jy704c1txuI2ZTXKyxo48Z3Wp8iv_4xm9CfqbZ</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>Jarvis, Karyn L.</creator><creator>Barnes, Timothy J.</creator><creator>Prestidge, Clive A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120715</creationdate><title>Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications</title><author>Jarvis, Karyn L. ; Barnes, Timothy J. ; Prestidge, Clive A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-a5bc61f41d20fea90ed09250867cc6f857b46676a1bcf577b3e0cd4cf6a159223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Dissolution</topic><topic>Drug Compounding</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug loading</topic><topic>Drugs</topic><topic>Encapsulation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Oxidation</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous silicon</topic><topic>Silicon - chemistry</topic><topic>Surface chemistry</topic><topic>Surface modification</topic><topic>Surface Properties</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarvis, Karyn L.</creatorcontrib><creatorcontrib>Barnes, Timothy J.</creatorcontrib><creatorcontrib>Prestidge, Clive A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advances in colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarvis, Karyn L.</au><au>Barnes, Timothy J.</au><au>Prestidge, Clive A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications</atitle><jtitle>Advances in colloid and interface science</jtitle><addtitle>Adv Colloid Interface Sci</addtitle><date>2012-07-15</date><risdate>2012</risdate><volume>175</volume><spage>25</spage><epage>38</epage><pages>25-38</pages><issn>0001-8686</issn><eissn>1873-3727</eissn><coden>ACISB9</coden><abstract>Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native SiySiHx terminated pSi surface is highly reactive and prone to spontaneous oxidation. Surface modification is used to stabilize the pSi surface but also to produce surfaces with desired drug delivery behavior, typically via oxidation, hydrosilylation or thermal carbonization. A number of advanced characterization techniques have been used to analyze pSi surface chemistry, including X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification not only stabilizes the pSi surface but determines its charge, wettability and dissolution properties. Manipulation of these parameters can impact drug encapsulation by altering drug–pSi interactions. pSi has shown to be a successful vehicle for the delivery of poorly soluble drugs and protein therapeutics. Surface modification influences drug pore penetration, crystallinity, loading level and dissolution rate. Surface modification of pSi shows great potential for drug delivery applications by controlling pSi–drug interactions. Controlling these interactions allows specific drug release behaviors to be engineered to aid in the delivery of previously challenging therapeutics. Within this review, different pSi modification techniques will be outlined followed by a summary of how pSi surface modification has been used to improve drug encapsulation and delivery. [Display omitted] ► Porous silicon (pSi) has significant potential as a drug delivery vehicle. ► The hydride terminated surface can be passivated via oxidation and hydrosilylation. ► Surface modification can be used to tailor drug–pSi interactions. ► By controlling drug crystallinity within pSi pores, drug dissolution is enhanced. ► Techniques such as XPS and ToF-SIMS provide insight into modification and loading.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22521238</pmid><doi>10.1016/j.cis.2012.03.006</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8686
ispartof Advances in colloid and interface science, 2012-07, Vol.175, p.25-38
issn 0001-8686
1873-3727
language eng
recordid cdi_proquest_miscellaneous_1671266504
source MEDLINE; Elsevier ScienceDirect Journals
subjects Chemistry
Colloidal state and disperse state
Dissolution
Drug Compounding
Drug delivery
Drug Delivery Systems
Drug loading
Drugs
Encapsulation
Exact sciences and technology
General and physical chemistry
Oxidation
Porosity
Porous materials
Porous silicon
Silicon - chemistry
Surface chemistry
Surface modification
Surface Properties
Vehicles
title Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20chemistry%20of%20porous%20silicon%20and%20implications%20for%20drug%20encapsulation%20and%20delivery%20applications&rft.jtitle=Advances%20in%20colloid%20and%20interface%20science&rft.au=Jarvis,%20Karyn%20L.&rft.date=2012-07-15&rft.volume=175&rft.spage=25&rft.epage=38&rft.pages=25-38&rft.issn=0001-8686&rft.eissn=1873-3727&rft.coden=ACISB9&rft_id=info:doi/10.1016/j.cis.2012.03.006&rft_dat=%3Cproquest_cross%3E1011541927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011541927&rft_id=info:pmid/22521238&rft_els_id=S0001868612000498&rfr_iscdi=true