Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence

Many technologies have life cycles that are shorter than the life cycle of the product or system they are in. Life cycle mismatches caused by the obsolescence of technology can result in large life cycle costs for long field life systems, such as aircraft, ships, communications infrastructure, power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability 2011-02, Vol.51 (2), p.392-399
Hauptverfasser: Sandborn, P., Prabhakar, V., Ahmad, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 2
container_start_page 392
container_title Microelectronics and reliability
container_volume 51
creator Sandborn, P.
Prabhakar, V.
Ahmad, O.
description Many technologies have life cycles that are shorter than the life cycle of the product or system they are in. Life cycle mismatches caused by the obsolescence of technology can result in large life cycle costs for long field life systems, such as aircraft, ships, communications infrastructure, power plant and grid management, and military systems. This paper addresses Diminishing Manufacturing Sources and Materials Shortages (DMSMS) obsolescence, which is defined as the loss of the ability to procure a technology or part from its original manufacturer. Forecasting when technologies and specific parts will become unavailable (non-procurable) is a key enabler for pro-active DMSMS management and strategic life cycle planning for long field life systems. This paper presents a methodology for generating algorithms that can be used to predict the obsolescence dates for electronic parts that do not have clear evolutionary parametric drivers. The method is based on the calculation of procurement lifetime using databases of previous obsolescence events and introduced parts that have not gone obsolete. The methodology has been demonstrated on a range of different electronic parts and for the trending of specific part attributes.
doi_str_mv 10.1016/j.microrel.2010.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671264138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271410004336</els_id><sourcerecordid>1671264138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a416bb973b2373f2d7418bbe3fe63b8fb1c853299aab1ddc7f119af5393338f83</originalsourceid><addsrcrecordid>eNqFkM9rFDEUx4MouLb-C5KL4GXWvGRmkrkptVWhpYda6C0mmZeaJTNZk6zgf2-WrV49PXh8vu_Hh5A3wLbAYHy_2y7B5ZQxbjlrTaa2jA3PyAaU5N3Uw8NzsmGMjx2X0L8kr0rZMcYkA9iQ71ct6EypYX2kGNHVnNbg6N7kSvc5uUPGBddKY_BYw4KF1kRxNTYirT-QLmY1jyckefrp5u7mjiZbUsTicHV4Tl54Ewu-fqpn5P7q8tvFl-769vPXi4_XnRNyqJ3pYbR2ksJyIYXns-xBWYvC4yis8hacGgSfJmMszLOTHmAyfhCTEEJ5Jc7Iu9PcdvTPA5aql9AuiNGsmA5FwyiBjz2IIzqe0GatlIxe73NYTP6tgemjUr3Tf5Xqo1LNlG5KW_Dt0w5TnIk-m9WF8i_NheIDAGvchxOH7eFfAbMuLhxlzKHJrnpO4X-r_gDab5Fy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671264138</pqid></control><display><type>article</type><title>Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence</title><source>Elsevier ScienceDirect Journals</source><creator>Sandborn, P. ; Prabhakar, V. ; Ahmad, O.</creator><creatorcontrib>Sandborn, P. ; Prabhakar, V. ; Ahmad, O.</creatorcontrib><description>Many technologies have life cycles that are shorter than the life cycle of the product or system they are in. Life cycle mismatches caused by the obsolescence of technology can result in large life cycle costs for long field life systems, such as aircraft, ships, communications infrastructure, power plant and grid management, and military systems. This paper addresses Diminishing Manufacturing Sources and Materials Shortages (DMSMS) obsolescence, which is defined as the loss of the ability to procure a technology or part from its original manufacturer. Forecasting when technologies and specific parts will become unavailable (non-procurable) is a key enabler for pro-active DMSMS management and strategic life cycle planning for long field life systems. This paper presents a methodology for generating algorithms that can be used to predict the obsolescence dates for electronic parts that do not have clear evolutionary parametric drivers. The method is based on the calculation of procurement lifetime using databases of previous obsolescence events and introduced parts that have not gone obsolete. The methodology has been demonstrated on a range of different electronic parts and for the trending of specific part attributes.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2010.08.005</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aircraft components ; Applied sciences ; Avionics ; Exact sciences and technology ; Life cycle engineering ; Management ; Methodology ; Obsolescence ; Operational research and scientific management ; Operational research. Management science ; Planning. Forecasting ; Procurement ; Product life cycle</subject><ispartof>Microelectronics and reliability, 2011-02, Vol.51 (2), p.392-399</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a416bb973b2373f2d7418bbe3fe63b8fb1c853299aab1ddc7f119af5393338f83</citedby><cites>FETCH-LOGICAL-c375t-a416bb973b2373f2d7418bbe3fe63b8fb1c853299aab1ddc7f119af5393338f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2010.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23825110$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandborn, P.</creatorcontrib><creatorcontrib>Prabhakar, V.</creatorcontrib><creatorcontrib>Ahmad, O.</creatorcontrib><title>Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence</title><title>Microelectronics and reliability</title><description>Many technologies have life cycles that are shorter than the life cycle of the product or system they are in. Life cycle mismatches caused by the obsolescence of technology can result in large life cycle costs for long field life systems, such as aircraft, ships, communications infrastructure, power plant and grid management, and military systems. This paper addresses Diminishing Manufacturing Sources and Materials Shortages (DMSMS) obsolescence, which is defined as the loss of the ability to procure a technology or part from its original manufacturer. Forecasting when technologies and specific parts will become unavailable (non-procurable) is a key enabler for pro-active DMSMS management and strategic life cycle planning for long field life systems. This paper presents a methodology for generating algorithms that can be used to predict the obsolescence dates for electronic parts that do not have clear evolutionary parametric drivers. The method is based on the calculation of procurement lifetime using databases of previous obsolescence events and introduced parts that have not gone obsolete. The methodology has been demonstrated on a range of different electronic parts and for the trending of specific part attributes.</description><subject>Aircraft components</subject><subject>Applied sciences</subject><subject>Avionics</subject><subject>Exact sciences and technology</subject><subject>Life cycle engineering</subject><subject>Management</subject><subject>Methodology</subject><subject>Obsolescence</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Planning. Forecasting</subject><subject>Procurement</subject><subject>Product life cycle</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM9rFDEUx4MouLb-C5KL4GXWvGRmkrkptVWhpYda6C0mmZeaJTNZk6zgf2-WrV49PXh8vu_Hh5A3wLbAYHy_2y7B5ZQxbjlrTaa2jA3PyAaU5N3Uw8NzsmGMjx2X0L8kr0rZMcYkA9iQ71ct6EypYX2kGNHVnNbg6N7kSvc5uUPGBddKY_BYw4KF1kRxNTYirT-QLmY1jyckefrp5u7mjiZbUsTicHV4Tl54Ewu-fqpn5P7q8tvFl-769vPXi4_XnRNyqJ3pYbR2ksJyIYXns-xBWYvC4yis8hacGgSfJmMszLOTHmAyfhCTEEJ5Jc7Iu9PcdvTPA5aql9AuiNGsmA5FwyiBjz2IIzqe0GatlIxe73NYTP6tgemjUr3Tf5Xqo1LNlG5KW_Dt0w5TnIk-m9WF8i_NheIDAGvchxOH7eFfAbMuLhxlzKHJrnpO4X-r_gDab5Fy</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Sandborn, P.</creator><creator>Prabhakar, V.</creator><creator>Ahmad, O.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence</title><author>Sandborn, P. ; Prabhakar, V. ; Ahmad, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a416bb973b2373f2d7418bbe3fe63b8fb1c853299aab1ddc7f119af5393338f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aircraft components</topic><topic>Applied sciences</topic><topic>Avionics</topic><topic>Exact sciences and technology</topic><topic>Life cycle engineering</topic><topic>Management</topic><topic>Methodology</topic><topic>Obsolescence</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Planning. Forecasting</topic><topic>Procurement</topic><topic>Product life cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandborn, P.</creatorcontrib><creatorcontrib>Prabhakar, V.</creatorcontrib><creatorcontrib>Ahmad, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandborn, P.</au><au>Prabhakar, V.</au><au>Ahmad, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence</atitle><jtitle>Microelectronics and reliability</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>392</spage><epage>399</epage><pages>392-399</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>Many technologies have life cycles that are shorter than the life cycle of the product or system they are in. Life cycle mismatches caused by the obsolescence of technology can result in large life cycle costs for long field life systems, such as aircraft, ships, communications infrastructure, power plant and grid management, and military systems. This paper addresses Diminishing Manufacturing Sources and Materials Shortages (DMSMS) obsolescence, which is defined as the loss of the ability to procure a technology or part from its original manufacturer. Forecasting when technologies and specific parts will become unavailable (non-procurable) is a key enabler for pro-active DMSMS management and strategic life cycle planning for long field life systems. This paper presents a methodology for generating algorithms that can be used to predict the obsolescence dates for electronic parts that do not have clear evolutionary parametric drivers. The method is based on the calculation of procurement lifetime using databases of previous obsolescence events and introduced parts that have not gone obsolete. The methodology has been demonstrated on a range of different electronic parts and for the trending of specific part attributes.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2010.08.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-2714
ispartof Microelectronics and reliability, 2011-02, Vol.51 (2), p.392-399
issn 0026-2714
1872-941X
language eng
recordid cdi_proquest_miscellaneous_1671264138
source Elsevier ScienceDirect Journals
subjects Aircraft components
Applied sciences
Avionics
Exact sciences and technology
Life cycle engineering
Management
Methodology
Obsolescence
Operational research and scientific management
Operational research. Management science
Planning. Forecasting
Procurement
Product life cycle
title Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20electronic%20part%20procurement%20lifetimes%20to%20enable%20the%20management%20of%20DMSMS%20obsolescence&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Sandborn,%20P.&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=392&rft.epage=399&rft.pages=392-399&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2010.08.005&rft_dat=%3Cproquest_cross%3E1671264138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671264138&rft_id=info:pmid/&rft_els_id=S0026271410004336&rfr_iscdi=true