A Non-Contact-Type RF MEMS Switch for 24-GHz Radar Applications

This paper presents the design, fabrication, and measurement results for a novel non-contact-type radio-frequency (RF) microelectromechanical systems switch for 24-GHz radar applications. The proposed switches are free from unavoidable microwelding and stiction problems in other contact types, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2009-02, Vol.18 (1), p.163-173
Hauptverfasser: Jaehong Park, Shim, E.S., Wooyeol Choi, Youngmin Kim, Youngwoo Kwon, Dong-il Cho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the design, fabrication, and measurement results for a novel non-contact-type radio-frequency (RF) microelectromechanical systems switch for 24-GHz radar applications. The proposed switches are free from unavoidable microwelding and stiction problems in other contact types, which in turn guarantee high reliability and long lifetime. The developed switch is a capacitive shunt type using a variation of the capacitance between the signal line and ground lines. The capacitance is precisely regulated by comb-drive actuators. This concept is simple, but the design requires a large and precise mechanical motion. In addition, for a low-loss switch structure, an air bridge with a large air gap is required. Therefore, the selective silicon-on-insulator process, based on the sacrificial bulk micromachining process, is designed for this switch fabrication. First, large insulating supports are fabricated 60 ¿m below the wafer surface, and then, the RF switch is fabricated on these insulating supports. The measured actuation voltage is 25 V, and the actuation stroke is 25 ¿m. The switching times are 8 ms in the off to the on state and 200 ¿s in the on to the off state. In the RF characteristic measurements, the insertion loss without the long coplanar waveguide line loss is 0.29 dB and the isolation is 30.1 dB at 24 GHz. The bandwidth is relatively narrow, and the isolation is 25 dB or better in the range of 23.5-29 GHz. The reliability test for the switch was performed 10 9 times with 18-mW RF power. We observed no mechanical failure or RF performance degradation. A power handling capacity of 0.9 W with a hot-switch condition was achieved.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2008.2011124