Development of core to solve the multidimensional multiple-choice knapsack problem

The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0–1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2011-03, Vol.60 (2), p.349-360
Hauptverfasser: Ghasemi, Taha, Razzazi, Mohammadreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 2
container_start_page 349
container_title Computers & industrial engineering
container_volume 60
creator Ghasemi, Taha
Razzazi, Mohammadreza
description The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0–1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for the MMKP and utilize it to solve the problem exactly. Computational results show that the algorithm can solve large uncorrelated instances (up to 100 classes and 100 items in each class) and correlated instances with small number of constraints (up to 5) efficiently. In particular, it solves recently published hard instances for the MMKP in less than a second. The algorithm consumes negligible memory, and compared with the best previous exact algorithm for the MMKP performs significantly faster.
doi_str_mv 10.1016/j.cie.2010.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671262389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835210003153</els_id><sourcerecordid>2257659181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2a89e946f445bb8519a301cfc6d5b8cf940d5a7689afb848d1a432c0e6485ac03</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHfFlZuON2nSSXAlvkEQRNchTW8xM2lTk86A_94M48qFq_vgO_dyDiHnFBYUaH21WliHCwa7mS0A6AGZUblUJQgBh2QGVQ2lrAQ7JicprQCAC0Vn5O0Ot-jD2OMwFaErbIhYTKFIwW9z84lFv_GTa10GkguD8fvF6LG0n8FZLNaDGZOx62KMofHYn5KjzviEZ791Tj4e7t9vn8qX18fn25uX0lZiOZXMSIWK1x3nommkoMpUQG1n61Y00naKQyvMspbKdI3ksqWGV8wC1lwKY6Gak8v93fz3a4Np0r1LFr03A4ZN0rReUlazSqqMXvxBV2ETs5mkJVdMMCF4hugesjGkFLHTY3S9id-agt6FrFc6h6x3IWvKdA45a673GsxGtw6jThkZLLYuop10G9w_6h_QOoSd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849252554</pqid></control><display><type>article</type><title>Development of core to solve the multidimensional multiple-choice knapsack problem</title><source>Elsevier ScienceDirect Journals</source><creator>Ghasemi, Taha ; Razzazi, Mohammadreza</creator><creatorcontrib>Ghasemi, Taha ; Razzazi, Mohammadreza</creatorcontrib><description>The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0–1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for the MMKP and utilize it to solve the problem exactly. Computational results show that the algorithm can solve large uncorrelated instances (up to 100 classes and 100 items in each class) and correlated instances with small number of constraints (up to 5) efficiently. In particular, it solves recently published hard instances for the MMKP in less than a second. The algorithm consumes negligible memory, and compared with the best previous exact algorithm for the MMKP performs significantly faster.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2010.12.001</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Branch-and-bound ; Combinatorial optimization ; Computation ; Consumption ; Core ; Correlation ; Correlation analysis ; Industrial engineering ; Integer linear programming ; Knapsack problem ; Mail order ; Multidimensional multiple-choice knapsack ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2011-03, Vol.60 (2), p.349-360</ispartof><rights>2010 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2a89e946f445bb8519a301cfc6d5b8cf940d5a7689afb848d1a432c0e6485ac03</citedby><cites>FETCH-LOGICAL-c357t-2a89e946f445bb8519a301cfc6d5b8cf940d5a7689afb848d1a432c0e6485ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835210003153$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ghasemi, Taha</creatorcontrib><creatorcontrib>Razzazi, Mohammadreza</creatorcontrib><title>Development of core to solve the multidimensional multiple-choice knapsack problem</title><title>Computers &amp; industrial engineering</title><description>The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0–1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for the MMKP and utilize it to solve the problem exactly. Computational results show that the algorithm can solve large uncorrelated instances (up to 100 classes and 100 items in each class) and correlated instances with small number of constraints (up to 5) efficiently. In particular, it solves recently published hard instances for the MMKP in less than a second. The algorithm consumes negligible memory, and compared with the best previous exact algorithm for the MMKP performs significantly faster.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Branch-and-bound</subject><subject>Combinatorial optimization</subject><subject>Computation</subject><subject>Consumption</subject><subject>Core</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Industrial engineering</subject><subject>Integer linear programming</subject><subject>Knapsack problem</subject><subject>Mail order</subject><subject>Multidimensional multiple-choice knapsack</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHfFlZuON2nSSXAlvkEQRNchTW8xM2lTk86A_94M48qFq_vgO_dyDiHnFBYUaH21WliHCwa7mS0A6AGZUblUJQgBh2QGVQ2lrAQ7JicprQCAC0Vn5O0Ot-jD2OMwFaErbIhYTKFIwW9z84lFv_GTa10GkguD8fvF6LG0n8FZLNaDGZOx62KMofHYn5KjzviEZ791Tj4e7t9vn8qX18fn25uX0lZiOZXMSIWK1x3nommkoMpUQG1n61Y00naKQyvMspbKdI3ksqWGV8wC1lwKY6Gak8v93fz3a4Np0r1LFr03A4ZN0rReUlazSqqMXvxBV2ETs5mkJVdMMCF4hugesjGkFLHTY3S9id-agt6FrFc6h6x3IWvKdA45a673GsxGtw6jThkZLLYuop10G9w_6h_QOoSd</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ghasemi, Taha</creator><creator>Razzazi, Mohammadreza</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Development of core to solve the multidimensional multiple-choice knapsack problem</title><author>Ghasemi, Taha ; Razzazi, Mohammadreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2a89e946f445bb8519a301cfc6d5b8cf940d5a7689afb848d1a432c0e6485ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Branch-and-bound</topic><topic>Combinatorial optimization</topic><topic>Computation</topic><topic>Consumption</topic><topic>Core</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Industrial engineering</topic><topic>Integer linear programming</topic><topic>Knapsack problem</topic><topic>Mail order</topic><topic>Multidimensional multiple-choice knapsack</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasemi, Taha</creatorcontrib><creatorcontrib>Razzazi, Mohammadreza</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasemi, Taha</au><au>Razzazi, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of core to solve the multidimensional multiple-choice knapsack problem</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>60</volume><issue>2</issue><spage>349</spage><epage>360</epage><pages>349-360</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0–1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for the MMKP and utilize it to solve the problem exactly. Computational results show that the algorithm can solve large uncorrelated instances (up to 100 classes and 100 items in each class) and correlated instances with small number of constraints (up to 5) efficiently. In particular, it solves recently published hard instances for the MMKP in less than a second. The algorithm consumes negligible memory, and compared with the best previous exact algorithm for the MMKP performs significantly faster.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2010.12.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2011-03, Vol.60 (2), p.349-360
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_miscellaneous_1671262389
source Elsevier ScienceDirect Journals
subjects Algorithms
Approximation
Branch-and-bound
Combinatorial optimization
Computation
Consumption
Core
Correlation
Correlation analysis
Industrial engineering
Integer linear programming
Knapsack problem
Mail order
Multidimensional multiple-choice knapsack
Studies
title Development of core to solve the multidimensional multiple-choice knapsack problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20core%20to%20solve%20the%20multidimensional%20multiple-choice%20knapsack%20problem&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Ghasemi,%20Taha&rft.date=2011-03-01&rft.volume=60&rft.issue=2&rft.spage=349&rft.epage=360&rft.pages=349-360&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2010.12.001&rft_dat=%3Cproquest_cross%3E2257659181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849252554&rft_id=info:pmid/&rft_els_id=S0360835210003153&rfr_iscdi=true