Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity
Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine m...
Gespeichert in:
Veröffentlicht in: | European journal of biochemistry 1995-02, Vol.228 (1), p.50-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | European journal of biochemistry |
container_volume | 228 |
creator | Metzer, M.H Hollenberg, C.P |
description | Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1). |
doi_str_mv | 10.1111/j.1432-1033.1995.0050o.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_16712616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16712616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302O-d53a4c8054a502b902c2e38e2961cd6abaa2a1060840737133ae9c375e290a3</originalsourceid><addsrcrecordid>eNo9kU2P0zAQhi0EWsrCT0D4xC1hbMf5OHBYVruAtFKRCmdr4jjtVElcYkfbcOWPk27LzsWH551XIz-McQGpWObTPhWZkokApVJRVToF0ODT4wu2egYv2QpAZImsdP6avQlhDwB5lRdX7KooSwUCVuzvTU-D52ip4WGqQ6Q4RfJD4DTwuHN8dhgi_0F2R8gXfKBIgR_njqLveON2czP6rRswOG69G_7MvUtqGhoatrzxPS492LbOxqe6_xEeDs5SS5bi_Ja9arEL7t3lvWab-7uft9-Sh_XX77c3D4lVINdJoxVmtgSdoQZZVyCtdKp0ssqFbXKsESUKyKHMoFCFUApdZVWhlwSgumYfz62H0f-eXIimp2Bd1-Hg_BSMyAshc5EvwfeX4FT3rjGHkXocZ3P5s4V_PvNH6tz8jAWYkxqzNycD5mTAnNSYJzXmaO7vvmw0rJf9D-f9Fr3B7UjB_NpIEEu5Bq2X2_8BuW6OMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16712616</pqid></control><display><type>article</type><title>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Metzer, M.H ; Hollenberg, C.P</creator><creatorcontrib>Metzer, M.H ; Hollenberg, C.P</creatorcontrib><description>Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.1995.0050o.x</identifier><identifier>PMID: 7883010</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alcohol Dehydrogenase - metabolism ; alcohol oxidoreductases ; amino acid sequences ; binding ; Binding Sites ; D-Xylulose Reductase ; enzyme specificity ; genes ; Glutathione Reductase - metabolism ; Mutagenesis, Site-Directed ; NAD (coenzyme) ; NAD - metabolism ; NAD/NADP binding ; NADP (coenzyme) ; NADP - metabolism ; Pichia - enzymology ; Pichia stipitis ; protein engineering ; site-directed mutagenesis ; Structure-Activity Relationship ; Sugar Alcohol Dehydrogenases - chemistry ; Sugar Alcohol Dehydrogenases - metabolism ; xyl1 gene ; xyl2 gene ; Xylitol dehydrogenase ; xylose fermentation ; xylose reductase</subject><ispartof>European journal of biochemistry, 1995-02, Vol.228 (1), p.50-54</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302O-d53a4c8054a502b902c2e38e2961cd6abaa2a1060840737133ae9c375e290a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7883010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metzer, M.H</creatorcontrib><creatorcontrib>Hollenberg, C.P</creatorcontrib><title>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).</description><subject>Alcohol Dehydrogenase - metabolism</subject><subject>alcohol oxidoreductases</subject><subject>amino acid sequences</subject><subject>binding</subject><subject>Binding Sites</subject><subject>D-Xylulose Reductase</subject><subject>enzyme specificity</subject><subject>genes</subject><subject>Glutathione Reductase - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>NAD (coenzyme)</subject><subject>NAD - metabolism</subject><subject>NAD/NADP binding</subject><subject>NADP (coenzyme)</subject><subject>NADP - metabolism</subject><subject>Pichia - enzymology</subject><subject>Pichia stipitis</subject><subject>protein engineering</subject><subject>site-directed mutagenesis</subject><subject>Structure-Activity Relationship</subject><subject>Sugar Alcohol Dehydrogenases - chemistry</subject><subject>Sugar Alcohol Dehydrogenases - metabolism</subject><subject>xyl1 gene</subject><subject>xyl2 gene</subject><subject>Xylitol dehydrogenase</subject><subject>xylose fermentation</subject><subject>xylose reductase</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU2P0zAQhi0EWsrCT0D4xC1hbMf5OHBYVruAtFKRCmdr4jjtVElcYkfbcOWPk27LzsWH551XIz-McQGpWObTPhWZkokApVJRVToF0ODT4wu2egYv2QpAZImsdP6avQlhDwB5lRdX7KooSwUCVuzvTU-D52ip4WGqQ6Q4RfJD4DTwuHN8dhgi_0F2R8gXfKBIgR_njqLveON2czP6rRswOG69G_7MvUtqGhoatrzxPS492LbOxqe6_xEeDs5SS5bi_Ja9arEL7t3lvWab-7uft9-Sh_XX77c3D4lVINdJoxVmtgSdoQZZVyCtdKp0ssqFbXKsESUKyKHMoFCFUApdZVWhlwSgumYfz62H0f-eXIimp2Bd1-Hg_BSMyAshc5EvwfeX4FT3rjGHkXocZ3P5s4V_PvNH6tz8jAWYkxqzNycD5mTAnNSYJzXmaO7vvmw0rJf9D-f9Fr3B7UjB_NpIEEu5Bq2X2_8BuW6OMw</recordid><startdate>19950215</startdate><enddate>19950215</enddate><creator>Metzer, M.H</creator><creator>Hollenberg, C.P</creator><general>Blackwell Science Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>M7N</scope></search><sort><creationdate>19950215</creationdate><title>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</title><author>Metzer, M.H ; Hollenberg, C.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302O-d53a4c8054a502b902c2e38e2961cd6abaa2a1060840737133ae9c375e290a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Alcohol Dehydrogenase - metabolism</topic><topic>alcohol oxidoreductases</topic><topic>amino acid sequences</topic><topic>binding</topic><topic>Binding Sites</topic><topic>D-Xylulose Reductase</topic><topic>enzyme specificity</topic><topic>genes</topic><topic>Glutathione Reductase - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>NAD (coenzyme)</topic><topic>NAD - metabolism</topic><topic>NAD/NADP binding</topic><topic>NADP (coenzyme)</topic><topic>NADP - metabolism</topic><topic>Pichia - enzymology</topic><topic>Pichia stipitis</topic><topic>protein engineering</topic><topic>site-directed mutagenesis</topic><topic>Structure-Activity Relationship</topic><topic>Sugar Alcohol Dehydrogenases - chemistry</topic><topic>Sugar Alcohol Dehydrogenases - metabolism</topic><topic>xyl1 gene</topic><topic>xyl2 gene</topic><topic>Xylitol dehydrogenase</topic><topic>xylose fermentation</topic><topic>xylose reductase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzer, M.H</creatorcontrib><creatorcontrib>Hollenberg, C.P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzer, M.H</au><au>Hollenberg, C.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>1995-02-15</date><risdate>1995</risdate><volume>228</volume><issue>1</issue><spage>50</spage><epage>54</epage><pages>50-54</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><abstract>Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>7883010</pmid><doi>10.1111/j.1432-1033.1995.0050o.x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2956 |
ispartof | European journal of biochemistry, 1995-02, Vol.228 (1), p.50-54 |
issn | 0014-2956 1432-1033 |
language | eng |
recordid | cdi_proquest_miscellaneous_16712616 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Alcohol Dehydrogenase - metabolism alcohol oxidoreductases amino acid sequences binding Binding Sites D-Xylulose Reductase enzyme specificity genes Glutathione Reductase - metabolism Mutagenesis, Site-Directed NAD (coenzyme) NAD - metabolism NAD/NADP binding NADP (coenzyme) NADP - metabolism Pichia - enzymology Pichia stipitis protein engineering site-directed mutagenesis Structure-Activity Relationship Sugar Alcohol Dehydrogenases - chemistry Sugar Alcohol Dehydrogenases - metabolism xyl1 gene xyl2 gene Xylitol dehydrogenase xylose fermentation xylose reductase |
title | Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20acid%20substitutions%20in%20the%20yeast%20Pichia%20stipitis%20xylitol%20dehydrogenase%20coenzyme-binding%20domain%20affect%20the%20coenzyme%20specificity&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=Metzer,%20M.H&rft.date=1995-02-15&rft.volume=228&rft.issue=1&rft.spage=50&rft.epage=54&rft.pages=50-54&rft.issn=0014-2956&rft.eissn=1432-1033&rft_id=info:doi/10.1111/j.1432-1033.1995.0050o.x&rft_dat=%3Cproquest_pubme%3E16712616%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16712616&rft_id=info:pmid/7883010&rfr_iscdi=true |