Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity

Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of biochemistry 1995-02, Vol.228 (1), p.50-54
Hauptverfasser: Metzer, M.H, Hollenberg, C.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 50
container_title European journal of biochemistry
container_volume 228
creator Metzer, M.H
Hollenberg, C.P
description Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).
doi_str_mv 10.1111/j.1432-1033.1995.0050o.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_16712616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16712616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302O-d53a4c8054a502b902c2e38e2961cd6abaa2a1060840737133ae9c375e290a3</originalsourceid><addsrcrecordid>eNo9kU2P0zAQhi0EWsrCT0D4xC1hbMf5OHBYVruAtFKRCmdr4jjtVElcYkfbcOWPk27LzsWH551XIz-McQGpWObTPhWZkokApVJRVToF0ODT4wu2egYv2QpAZImsdP6avQlhDwB5lRdX7KooSwUCVuzvTU-D52ip4WGqQ6Q4RfJD4DTwuHN8dhgi_0F2R8gXfKBIgR_njqLveON2czP6rRswOG69G_7MvUtqGhoatrzxPS492LbOxqe6_xEeDs5SS5bi_Ja9arEL7t3lvWab-7uft9-Sh_XX77c3D4lVINdJoxVmtgSdoQZZVyCtdKp0ssqFbXKsESUKyKHMoFCFUApdZVWhlwSgumYfz62H0f-eXIimp2Bd1-Hg_BSMyAshc5EvwfeX4FT3rjGHkXocZ3P5s4V_PvNH6tz8jAWYkxqzNycD5mTAnNSYJzXmaO7vvmw0rJf9D-f9Fr3B7UjB_NpIEEu5Bq2X2_8BuW6OMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16712616</pqid></control><display><type>article</type><title>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Metzer, M.H ; Hollenberg, C.P</creator><creatorcontrib>Metzer, M.H ; Hollenberg, C.P</creatorcontrib><description>Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.1995.0050o.x</identifier><identifier>PMID: 7883010</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alcohol Dehydrogenase - metabolism ; alcohol oxidoreductases ; amino acid sequences ; binding ; Binding Sites ; D-Xylulose Reductase ; enzyme specificity ; genes ; Glutathione Reductase - metabolism ; Mutagenesis, Site-Directed ; NAD (coenzyme) ; NAD - metabolism ; NAD/NADP binding ; NADP (coenzyme) ; NADP - metabolism ; Pichia - enzymology ; Pichia stipitis ; protein engineering ; site-directed mutagenesis ; Structure-Activity Relationship ; Sugar Alcohol Dehydrogenases - chemistry ; Sugar Alcohol Dehydrogenases - metabolism ; xyl1 gene ; xyl2 gene ; Xylitol dehydrogenase ; xylose fermentation ; xylose reductase</subject><ispartof>European journal of biochemistry, 1995-02, Vol.228 (1), p.50-54</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302O-d53a4c8054a502b902c2e38e2961cd6abaa2a1060840737133ae9c375e290a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7883010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metzer, M.H</creatorcontrib><creatorcontrib>Hollenberg, C.P</creatorcontrib><title>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).</description><subject>Alcohol Dehydrogenase - metabolism</subject><subject>alcohol oxidoreductases</subject><subject>amino acid sequences</subject><subject>binding</subject><subject>Binding Sites</subject><subject>D-Xylulose Reductase</subject><subject>enzyme specificity</subject><subject>genes</subject><subject>Glutathione Reductase - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>NAD (coenzyme)</subject><subject>NAD - metabolism</subject><subject>NAD/NADP binding</subject><subject>NADP (coenzyme)</subject><subject>NADP - metabolism</subject><subject>Pichia - enzymology</subject><subject>Pichia stipitis</subject><subject>protein engineering</subject><subject>site-directed mutagenesis</subject><subject>Structure-Activity Relationship</subject><subject>Sugar Alcohol Dehydrogenases - chemistry</subject><subject>Sugar Alcohol Dehydrogenases - metabolism</subject><subject>xyl1 gene</subject><subject>xyl2 gene</subject><subject>Xylitol dehydrogenase</subject><subject>xylose fermentation</subject><subject>xylose reductase</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU2P0zAQhi0EWsrCT0D4xC1hbMf5OHBYVruAtFKRCmdr4jjtVElcYkfbcOWPk27LzsWH551XIz-McQGpWObTPhWZkokApVJRVToF0ODT4wu2egYv2QpAZImsdP6avQlhDwB5lRdX7KooSwUCVuzvTU-D52ip4WGqQ6Q4RfJD4DTwuHN8dhgi_0F2R8gXfKBIgR_njqLveON2czP6rRswOG69G_7MvUtqGhoatrzxPS492LbOxqe6_xEeDs5SS5bi_Ja9arEL7t3lvWab-7uft9-Sh_XX77c3D4lVINdJoxVmtgSdoQZZVyCtdKp0ssqFbXKsESUKyKHMoFCFUApdZVWhlwSgumYfz62H0f-eXIimp2Bd1-Hg_BSMyAshc5EvwfeX4FT3rjGHkXocZ3P5s4V_PvNH6tz8jAWYkxqzNycD5mTAnNSYJzXmaO7vvmw0rJf9D-f9Fr3B7UjB_NpIEEu5Bq2X2_8BuW6OMw</recordid><startdate>19950215</startdate><enddate>19950215</enddate><creator>Metzer, M.H</creator><creator>Hollenberg, C.P</creator><general>Blackwell Science Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>M7N</scope></search><sort><creationdate>19950215</creationdate><title>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</title><author>Metzer, M.H ; Hollenberg, C.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302O-d53a4c8054a502b902c2e38e2961cd6abaa2a1060840737133ae9c375e290a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Alcohol Dehydrogenase - metabolism</topic><topic>alcohol oxidoreductases</topic><topic>amino acid sequences</topic><topic>binding</topic><topic>Binding Sites</topic><topic>D-Xylulose Reductase</topic><topic>enzyme specificity</topic><topic>genes</topic><topic>Glutathione Reductase - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>NAD (coenzyme)</topic><topic>NAD - metabolism</topic><topic>NAD/NADP binding</topic><topic>NADP (coenzyme)</topic><topic>NADP - metabolism</topic><topic>Pichia - enzymology</topic><topic>Pichia stipitis</topic><topic>protein engineering</topic><topic>site-directed mutagenesis</topic><topic>Structure-Activity Relationship</topic><topic>Sugar Alcohol Dehydrogenases - chemistry</topic><topic>Sugar Alcohol Dehydrogenases - metabolism</topic><topic>xyl1 gene</topic><topic>xyl2 gene</topic><topic>Xylitol dehydrogenase</topic><topic>xylose fermentation</topic><topic>xylose reductase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzer, M.H</creatorcontrib><creatorcontrib>Hollenberg, C.P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzer, M.H</au><au>Hollenberg, C.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>1995-02-15</date><risdate>1995</risdate><volume>228</volume><issue>1</issue><spage>50</spage><epage>54</epage><pages>50-54</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><abstract>Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding. Within the binding domain, a characteristic beta alpha beta-fold is centered around a glycine motif GXGXXG also containing conserved aspartate and lysine/arginine residues. The mutation D207 leads to G and the double mutation D207 leads to G and D210 leads to G increased the apparent Km for NAD ninefold and decreased the xylitol dehydrogenase activity to 47% and 35%, respectively, as compared to the unaltered enzyme. The introduction of the potential NADP-recognition sequence (GSRPVC) of the alcohol dehydrogenase from Thermoanaerobium brockii into the xylitol dehydrogenase allowed the mutant enzyme to use both NAD and NADP as cofactor with equal apparent Km values. Although this mutant enzyme displayed an unaltered NADP acceptance, the reduction of the NAD specificity in the stably expressed enzyme variant is an important first step towards the long-term goal to reverse the coenzyme specificity from NAD to NADP. The mutagenized XYL2 gene could still mediate growth of Saccharomyces cerevisiae transformants on xylose minimal-medium plates when expressed together with the xylose reductase gene (XYL1).</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>7883010</pmid><doi>10.1111/j.1432-1033.1995.0050o.x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-2956
ispartof European journal of biochemistry, 1995-02, Vol.228 (1), p.50-54
issn 0014-2956
1432-1033
language eng
recordid cdi_proquest_miscellaneous_16712616
source MEDLINE; Alma/SFX Local Collection
subjects Alcohol Dehydrogenase - metabolism
alcohol oxidoreductases
amino acid sequences
binding
Binding Sites
D-Xylulose Reductase
enzyme specificity
genes
Glutathione Reductase - metabolism
Mutagenesis, Site-Directed
NAD (coenzyme)
NAD - metabolism
NAD/NADP binding
NADP (coenzyme)
NADP - metabolism
Pichia - enzymology
Pichia stipitis
protein engineering
site-directed mutagenesis
Structure-Activity Relationship
Sugar Alcohol Dehydrogenases - chemistry
Sugar Alcohol Dehydrogenases - metabolism
xyl1 gene
xyl2 gene
Xylitol dehydrogenase
xylose fermentation
xylose reductase
title Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20acid%20substitutions%20in%20the%20yeast%20Pichia%20stipitis%20xylitol%20dehydrogenase%20coenzyme-binding%20domain%20affect%20the%20coenzyme%20specificity&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=Metzer,%20M.H&rft.date=1995-02-15&rft.volume=228&rft.issue=1&rft.spage=50&rft.epage=54&rft.pages=50-54&rft.issn=0014-2956&rft.eissn=1432-1033&rft_id=info:doi/10.1111/j.1432-1033.1995.0050o.x&rft_dat=%3Cproquest_pubme%3E16712616%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16712616&rft_id=info:pmid/7883010&rfr_iscdi=true