The FERET evaluation methodology for face-recognition algorithms
Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2000-10, Vol.22 (10), p.1090-1104 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1104 |
---|---|
container_issue | 10 |
container_start_page | 1090 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 22 |
creator | Phillips, P.J. Hyeonjoon Moon Rizvi, S.A. Rauss, P.J. |
description | Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance. |
doi_str_mv | 10.1109/34.879790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671260868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>879790</ieee_id><sourcerecordid>2434726521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgCs7pwaun4kH00Jn05edNGZsKA0HmucQ22TraZiatsP_eaIcHD3p6h_fhy3t8EToneEIIVrdAJ1IoofABGhEFKgUG6hCNMOFZKmUmj9FJCBuMCWUYRuhuuTbJfPYyWybmQ9e97irXJo3p1q50tVvtEut8YnVhUm8Kt2qrb6DrlfNVt27CKTqyug7mbD_H6HU-W04f08Xzw9P0fpEWFGiXKlYCf-PEAhXaUEqoKAUoycp4BmiMRUENUyAtlATbkoAFYhmNP5SKMwtjdDXkbr17703o8qYKhalr3RrXhzyTnBOGs_-hYDGU4wiv_4SEC5JxLLmM9PIX3bjet_HfXEqGheCSRnQzoMK7ELyx-dZXjfa7nOD8q5wcaD6UE-3FYCtjzI_bLz8BoceGjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885077684</pqid></control><display><type>article</type><title>The FERET evaluation methodology for face-recognition algorithms</title><source>IEEE Explore</source><creator>Phillips, P.J. ; Hyeonjoon Moon ; Rizvi, S.A. ; Rauss, P.J.</creator><creatorcontrib>Phillips, P.J. ; Hyeonjoon Moon ; Rizvi, S.A. ; Rauss, P.J.</creatorcontrib><description>Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.879790</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Area measurement ; Face recognition ; Facial ; Image databases ; Intelligence ; Pattern analysis ; State of the art ; System testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2000-10, Vol.22 (10), p.1090-1104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</citedby><cites>FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/879790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/879790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phillips, P.J.</creatorcontrib><creatorcontrib>Hyeonjoon Moon</creatorcontrib><creatorcontrib>Rizvi, S.A.</creatorcontrib><creatorcontrib>Rauss, P.J.</creatorcontrib><title>The FERET evaluation methodology for face-recognition algorithms</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.</description><subject>Algorithms</subject><subject>Area measurement</subject><subject>Face recognition</subject><subject>Facial</subject><subject>Image databases</subject><subject>Intelligence</subject><subject>Pattern analysis</subject><subject>State of the art</subject><subject>System testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LwzAUB_AgCs7pwaun4kH00Jn05edNGZsKA0HmucQ22TraZiatsP_eaIcHD3p6h_fhy3t8EToneEIIVrdAJ1IoofABGhEFKgUG6hCNMOFZKmUmj9FJCBuMCWUYRuhuuTbJfPYyWybmQ9e97irXJo3p1q50tVvtEut8YnVhUm8Kt2qrb6DrlfNVt27CKTqyug7mbD_H6HU-W04f08Xzw9P0fpEWFGiXKlYCf-PEAhXaUEqoKAUoycp4BmiMRUENUyAtlATbkoAFYhmNP5SKMwtjdDXkbr17703o8qYKhalr3RrXhzyTnBOGs_-hYDGU4wiv_4SEC5JxLLmM9PIX3bjet_HfXEqGheCSRnQzoMK7ELyx-dZXjfa7nOD8q5wcaD6UE-3FYCtjzI_bLz8BoceGjA</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Phillips, P.J.</creator><creator>Hyeonjoon Moon</creator><creator>Rizvi, S.A.</creator><creator>Rauss, P.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001001</creationdate><title>The FERET evaluation methodology for face-recognition algorithms</title><author>Phillips, P.J. ; Hyeonjoon Moon ; Rizvi, S.A. ; Rauss, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Area measurement</topic><topic>Face recognition</topic><topic>Facial</topic><topic>Image databases</topic><topic>Intelligence</topic><topic>Pattern analysis</topic><topic>State of the art</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, P.J.</creatorcontrib><creatorcontrib>Hyeonjoon Moon</creatorcontrib><creatorcontrib>Rizvi, S.A.</creatorcontrib><creatorcontrib>Rauss, P.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phillips, P.J.</au><au>Hyeonjoon Moon</au><au>Rizvi, S.A.</au><au>Rauss, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The FERET evaluation methodology for face-recognition algorithms</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>22</volume><issue>10</issue><spage>1090</spage><epage>1104</epage><pages>1090-1104</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/34.879790</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2000-10, Vol.22 (10), p.1090-1104 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671260868 |
source | IEEE Explore |
subjects | Algorithms Area measurement Face recognition Facial Image databases Intelligence Pattern analysis State of the art System testing |
title | The FERET evaluation methodology for face-recognition algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20FERET%20evaluation%20methodology%20for%20face-recognition%20algorithms&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Phillips,%20P.J.&rft.date=2000-10-01&rft.volume=22&rft.issue=10&rft.spage=1090&rft.epage=1104&rft.pages=1090-1104&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.879790&rft_dat=%3Cproquest_RIE%3E2434726521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885077684&rft_id=info:pmid/&rft_ieee_id=879790&rfr_iscdi=true |