The FERET evaluation methodology for face-recognition algorithms

Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2000-10, Vol.22 (10), p.1090-1104
Hauptverfasser: Phillips, P.J., Hyeonjoon Moon, Rizvi, S.A., Rauss, P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 10
container_start_page 1090
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 22
creator Phillips, P.J.
Hyeonjoon Moon
Rizvi, S.A.
Rauss, P.J.
description Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.
doi_str_mv 10.1109/34.879790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671260868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>879790</ieee_id><sourcerecordid>2434726521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgCs7pwaun4kH00Jn05edNGZsKA0HmucQ22TraZiatsP_eaIcHD3p6h_fhy3t8EToneEIIVrdAJ1IoofABGhEFKgUG6hCNMOFZKmUmj9FJCBuMCWUYRuhuuTbJfPYyWybmQ9e97irXJo3p1q50tVvtEut8YnVhUm8Kt2qrb6DrlfNVt27CKTqyug7mbD_H6HU-W04f08Xzw9P0fpEWFGiXKlYCf-PEAhXaUEqoKAUoycp4BmiMRUENUyAtlATbkoAFYhmNP5SKMwtjdDXkbr17703o8qYKhalr3RrXhzyTnBOGs_-hYDGU4wiv_4SEC5JxLLmM9PIX3bjet_HfXEqGheCSRnQzoMK7ELyx-dZXjfa7nOD8q5wcaD6UE-3FYCtjzI_bLz8BoceGjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885077684</pqid></control><display><type>article</type><title>The FERET evaluation methodology for face-recognition algorithms</title><source>IEEE Explore</source><creator>Phillips, P.J. ; Hyeonjoon Moon ; Rizvi, S.A. ; Rauss, P.J.</creator><creatorcontrib>Phillips, P.J. ; Hyeonjoon Moon ; Rizvi, S.A. ; Rauss, P.J.</creatorcontrib><description>Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.879790</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Area measurement ; Face recognition ; Facial ; Image databases ; Intelligence ; Pattern analysis ; State of the art ; System testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2000-10, Vol.22 (10), p.1090-1104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</citedby><cites>FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/879790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/879790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phillips, P.J.</creatorcontrib><creatorcontrib>Hyeonjoon Moon</creatorcontrib><creatorcontrib>Rizvi, S.A.</creatorcontrib><creatorcontrib>Rauss, P.J.</creatorcontrib><title>The FERET evaluation methodology for face-recognition algorithms</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.</description><subject>Algorithms</subject><subject>Area measurement</subject><subject>Face recognition</subject><subject>Facial</subject><subject>Image databases</subject><subject>Intelligence</subject><subject>Pattern analysis</subject><subject>State of the art</subject><subject>System testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LwzAUB_AgCs7pwaun4kH00Jn05edNGZsKA0HmucQ22TraZiatsP_eaIcHD3p6h_fhy3t8EToneEIIVrdAJ1IoofABGhEFKgUG6hCNMOFZKmUmj9FJCBuMCWUYRuhuuTbJfPYyWybmQ9e97irXJo3p1q50tVvtEut8YnVhUm8Kt2qrb6DrlfNVt27CKTqyug7mbD_H6HU-W04f08Xzw9P0fpEWFGiXKlYCf-PEAhXaUEqoKAUoycp4BmiMRUENUyAtlATbkoAFYhmNP5SKMwtjdDXkbr17703o8qYKhalr3RrXhzyTnBOGs_-hYDGU4wiv_4SEC5JxLLmM9PIX3bjet_HfXEqGheCSRnQzoMK7ELyx-dZXjfa7nOD8q5wcaD6UE-3FYCtjzI_bLz8BoceGjA</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Phillips, P.J.</creator><creator>Hyeonjoon Moon</creator><creator>Rizvi, S.A.</creator><creator>Rauss, P.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001001</creationdate><title>The FERET evaluation methodology for face-recognition algorithms</title><author>Phillips, P.J. ; Hyeonjoon Moon ; Rizvi, S.A. ; Rauss, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-95d36b61f347ae44147d73985d5033a007c4e5938f3d10fd13f31f54193d965f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Area measurement</topic><topic>Face recognition</topic><topic>Facial</topic><topic>Image databases</topic><topic>Intelligence</topic><topic>Pattern analysis</topic><topic>State of the art</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, P.J.</creatorcontrib><creatorcontrib>Hyeonjoon Moon</creatorcontrib><creatorcontrib>Rizvi, S.A.</creatorcontrib><creatorcontrib>Rauss, P.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phillips, P.J.</au><au>Hyeonjoon Moon</au><au>Rizvi, S.A.</au><au>Rauss, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The FERET evaluation methodology for face-recognition algorithms</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>22</volume><issue>10</issue><spage>1090</spage><epage>1104</epage><pages>1090-1104</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/34.879790</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2000-10, Vol.22 (10), p.1090-1104
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_1671260868
source IEEE Explore
subjects Algorithms
Area measurement
Face recognition
Facial
Image databases
Intelligence
Pattern analysis
State of the art
System testing
title The FERET evaluation methodology for face-recognition algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20FERET%20evaluation%20methodology%20for%20face-recognition%20algorithms&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Phillips,%20P.J.&rft.date=2000-10-01&rft.volume=22&rft.issue=10&rft.spage=1090&rft.epage=1104&rft.pages=1090-1104&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.879790&rft_dat=%3Cproquest_RIE%3E2434726521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885077684&rft_id=info:pmid/&rft_ieee_id=879790&rfr_iscdi=true