Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function
In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2011-07, Vol.235 (18), p.5342-5347 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5347 |
---|---|
container_issue | 18 |
container_start_page | 5342 |
container_title | Journal of computational and applied mathematics |
container_volume | 235 |
creator | Alipanah, Amjad Esmaeili, Shahrokh |
description | In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method. |
doi_str_mv | 10.1016/j.cam.2009.11.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671260279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042709008000</els_id><sourcerecordid>1671260279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</originalsourceid><addsrcrecordid>eNp9kEFv1TAMxyMEEo_BB-CWCxKXdnbSNqk4oYmNSRNc4BylqbvlqU23uAXx7cnTmzhysmT__rb8E-I9Qo2A3eWxDn6pFUBfI9bQ6hfigNb0FRpjX4oDaGMqaJR5Ld4wHwGg67E5iOO3faEcg58lr_O-xTXJdZLbA8nt91qNcaHEpVnm15nGh3VeZEwb3efSoafdnxIsd47pXt74nTn6JLMfY5kPniPLaU_hRL0VryY_M717rhfi5_WXH1dfq7vvN7dXn--q0IDeKmo7rcFYrxAoUIv9oCz4oMDr1thuaNVoglG289prHAZUQADWtqpXgxn0hfh43vuY16edeHNL5EDz7BOtOzvsDKoOlOkLimc05JU50-Qec1x8_uMQ3MmrO7ri1Z28OkRXvJbMh-f1nou2KfsUIv8LqqYB1duucJ_OHJVff0XKjkOkFGiMmcLmxjX-58pf7QqOBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671260279</pqid></control><display><type>article</type><title>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alipanah, Amjad ; Esmaeili, Shahrokh</creator><creatorcontrib>Alipanah, Amjad ; Esmaeili, Shahrokh</creatorcontrib><description>In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2009.11.053</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Approximations and expansions ; Exact sciences and technology ; Fredholm integral equations ; Gaussian ; Integral equations ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Numerical methods in probability and statistics ; Radial basis function ; Sciences and techniques of general use ; Two dimensional ; Two-dimensional integral equations</subject><ispartof>Journal of computational and applied mathematics, 2011-07, Vol.235 (18), p.5342-5347</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</citedby><cites>FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2009.11.053$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24402986$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alipanah, Amjad</creatorcontrib><creatorcontrib>Esmaeili, Shahrokh</creatorcontrib><title>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</title><title>Journal of computational and applied mathematics</title><description>In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.</description><subject>Approximations and expansions</subject><subject>Exact sciences and technology</subject><subject>Fredholm integral equations</subject><subject>Gaussian</subject><subject>Integral equations</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Numerical methods in probability and statistics</subject><subject>Radial basis function</subject><subject>Sciences and techniques of general use</subject><subject>Two dimensional</subject><subject>Two-dimensional integral equations</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1TAMxyMEEo_BB-CWCxKXdnbSNqk4oYmNSRNc4BylqbvlqU23uAXx7cnTmzhysmT__rb8E-I9Qo2A3eWxDn6pFUBfI9bQ6hfigNb0FRpjX4oDaGMqaJR5Ld4wHwGg67E5iOO3faEcg58lr_O-xTXJdZLbA8nt91qNcaHEpVnm15nGh3VeZEwb3efSoafdnxIsd47pXt74nTn6JLMfY5kPniPLaU_hRL0VryY_M717rhfi5_WXH1dfq7vvN7dXn--q0IDeKmo7rcFYrxAoUIv9oCz4oMDr1thuaNVoglG289prHAZUQADWtqpXgxn0hfh43vuY16edeHNL5EDz7BOtOzvsDKoOlOkLimc05JU50-Qec1x8_uMQ3MmrO7ri1Z28OkRXvJbMh-f1nou2KfsUIv8LqqYB1duucJ_OHJVff0XKjkOkFGiMmcLmxjX-58pf7QqOBQ</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Alipanah, Amjad</creator><creator>Esmaeili, Shahrokh</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110715</creationdate><title>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</title><author>Alipanah, Amjad ; Esmaeili, Shahrokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximations and expansions</topic><topic>Exact sciences and technology</topic><topic>Fredholm integral equations</topic><topic>Gaussian</topic><topic>Integral equations</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Numerical methods in probability and statistics</topic><topic>Radial basis function</topic><topic>Sciences and techniques of general use</topic><topic>Two dimensional</topic><topic>Two-dimensional integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alipanah, Amjad</creatorcontrib><creatorcontrib>Esmaeili, Shahrokh</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alipanah, Amjad</au><au>Esmaeili, Shahrokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>235</volume><issue>18</issue><spage>5342</spage><epage>5347</epage><pages>5342-5347</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2009.11.053</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2011-07, Vol.235 (18), p.5342-5347 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671260279 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Approximations and expansions Exact sciences and technology Fredholm integral equations Gaussian Integral equations Interpolation Mathematical analysis Mathematical models Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Numerical methods in probability and statistics Radial basis function Sciences and techniques of general use Two dimensional Two-dimensional integral equations |
title | Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20two-dimensional%20Fredholm%20integral%20equations%20using%20Gaussian%20radial%20basis%20function&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Alipanah,%20Amjad&rft.date=2011-07-15&rft.volume=235&rft.issue=18&rft.spage=5342&rft.epage=5347&rft.pages=5342-5347&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2009.11.053&rft_dat=%3Cproquest_cross%3E1671260279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671260279&rft_id=info:pmid/&rft_els_id=S0377042709008000&rfr_iscdi=true |