Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function

In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2011-07, Vol.235 (18), p.5342-5347
Hauptverfasser: Alipanah, Amjad, Esmaeili, Shahrokh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5347
container_issue 18
container_start_page 5342
container_title Journal of computational and applied mathematics
container_volume 235
creator Alipanah, Amjad
Esmaeili, Shahrokh
description In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.
doi_str_mv 10.1016/j.cam.2009.11.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671260279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042709008000</els_id><sourcerecordid>1671260279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</originalsourceid><addsrcrecordid>eNp9kEFv1TAMxyMEEo_BB-CWCxKXdnbSNqk4oYmNSRNc4BylqbvlqU23uAXx7cnTmzhysmT__rb8E-I9Qo2A3eWxDn6pFUBfI9bQ6hfigNb0FRpjX4oDaGMqaJR5Ld4wHwGg67E5iOO3faEcg58lr_O-xTXJdZLbA8nt91qNcaHEpVnm15nGh3VeZEwb3efSoafdnxIsd47pXt74nTn6JLMfY5kPniPLaU_hRL0VryY_M717rhfi5_WXH1dfq7vvN7dXn--q0IDeKmo7rcFYrxAoUIv9oCz4oMDr1thuaNVoglG289prHAZUQADWtqpXgxn0hfh43vuY16edeHNL5EDz7BOtOzvsDKoOlOkLimc05JU50-Qec1x8_uMQ3MmrO7ri1Z28OkRXvJbMh-f1nou2KfsUIv8LqqYB1duucJ_OHJVff0XKjkOkFGiMmcLmxjX-58pf7QqOBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671260279</pqid></control><display><type>article</type><title>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alipanah, Amjad ; Esmaeili, Shahrokh</creator><creatorcontrib>Alipanah, Amjad ; Esmaeili, Shahrokh</creatorcontrib><description>In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2009.11.053</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Approximations and expansions ; Exact sciences and technology ; Fredholm integral equations ; Gaussian ; Integral equations ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Numerical methods in probability and statistics ; Radial basis function ; Sciences and techniques of general use ; Two dimensional ; Two-dimensional integral equations</subject><ispartof>Journal of computational and applied mathematics, 2011-07, Vol.235 (18), p.5342-5347</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</citedby><cites>FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2009.11.053$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24402986$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alipanah, Amjad</creatorcontrib><creatorcontrib>Esmaeili, Shahrokh</creatorcontrib><title>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</title><title>Journal of computational and applied mathematics</title><description>In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.</description><subject>Approximations and expansions</subject><subject>Exact sciences and technology</subject><subject>Fredholm integral equations</subject><subject>Gaussian</subject><subject>Integral equations</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Numerical methods in probability and statistics</subject><subject>Radial basis function</subject><subject>Sciences and techniques of general use</subject><subject>Two dimensional</subject><subject>Two-dimensional integral equations</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1TAMxyMEEo_BB-CWCxKXdnbSNqk4oYmNSRNc4BylqbvlqU23uAXx7cnTmzhysmT__rb8E-I9Qo2A3eWxDn6pFUBfI9bQ6hfigNb0FRpjX4oDaGMqaJR5Ld4wHwGg67E5iOO3faEcg58lr_O-xTXJdZLbA8nt91qNcaHEpVnm15nGh3VeZEwb3efSoafdnxIsd47pXt74nTn6JLMfY5kPniPLaU_hRL0VryY_M717rhfi5_WXH1dfq7vvN7dXn--q0IDeKmo7rcFYrxAoUIv9oCz4oMDr1thuaNVoglG289prHAZUQADWtqpXgxn0hfh43vuY16edeHNL5EDz7BOtOzvsDKoOlOkLimc05JU50-Qec1x8_uMQ3MmrO7ri1Z28OkRXvJbMh-f1nou2KfsUIv8LqqYB1duucJ_OHJVff0XKjkOkFGiMmcLmxjX-58pf7QqOBQ</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Alipanah, Amjad</creator><creator>Esmaeili, Shahrokh</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110715</creationdate><title>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</title><author>Alipanah, Amjad ; Esmaeili, Shahrokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e5633078a210ece519b280ac20a35786b52d7c7286a3a31bb120e00885292b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximations and expansions</topic><topic>Exact sciences and technology</topic><topic>Fredholm integral equations</topic><topic>Gaussian</topic><topic>Integral equations</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Numerical methods in probability and statistics</topic><topic>Radial basis function</topic><topic>Sciences and techniques of general use</topic><topic>Two dimensional</topic><topic>Two-dimensional integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alipanah, Amjad</creatorcontrib><creatorcontrib>Esmaeili, Shahrokh</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alipanah, Amjad</au><au>Esmaeili, Shahrokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>235</volume><issue>18</issue><spage>5342</spage><epage>5347</epage><pages>5342-5347</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we introduce a numerical method for the solution of two-dimensional Fredholm integral equations. The method is based on interpolation by Gaussian radial basis function based on Legendre–Gauss–Lobatto nodes and weights. Numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the method.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2009.11.053</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2011-07, Vol.235 (18), p.5342-5347
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1671260279
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Approximations and expansions
Exact sciences and technology
Fredholm integral equations
Gaussian
Integral equations
Interpolation
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Numerical methods in probability and statistics
Radial basis function
Sciences and techniques of general use
Two dimensional
Two-dimensional integral equations
title Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20two-dimensional%20Fredholm%20integral%20equations%20using%20Gaussian%20radial%20basis%20function&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Alipanah,%20Amjad&rft.date=2011-07-15&rft.volume=235&rft.issue=18&rft.spage=5342&rft.epage=5347&rft.pages=5342-5347&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2009.11.053&rft_dat=%3Cproquest_cross%3E1671260279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671260279&rft_id=info:pmid/&rft_els_id=S0377042709008000&rfr_iscdi=true