Minimax versions of the two-stage t test

Let X be a N ( μ, σ 2 ) distributed characteristic with unknown σ . We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2012-05, Vol.53 (2), p.311-321
Hauptverfasser: Krumbholz, Wolf, Rohr, Andreas, Vangjeli, Eno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 2
container_start_page 311
container_title Statistical papers (Berlin, Germany)
container_volume 53
creator Krumbholz, Wolf
Rohr, Andreas
Vangjeli, Eno
description Let X be a N ( μ, σ 2 ) distributed characteristic with unknown σ . We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.
doi_str_mv 10.1007/s00362-010-0339-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671258416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671258416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a239530245aef5ca0fa001f623b4337b5c9975f12e5db58bb7ce69bae6e3bbf03</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEuHxA-hOokljWHvPPrtEES8piAZqyz7scFFyDvaFx7_H0VEgJKrd4puZ3SHkjMEFA2guMwBKToEBBURNYY9MmGRIdaPVPpmARk4FcHlIjnJeAjClFEzI9KHru7X9rN59yl3scxVDNbz6aviINA92UbZq8Hk4IQfBrrI__ZnH5Pnm-ml2R-ePt_ezqzltUfGBWo5aIPBaWB9EayHYkhUkR1cjNk60WjciMO7FixPKuab1UjvrpUfnAuAxmY6-mxTftiXYrLvc-tXK9j5us2GyYVyomsmCnv9Bl3Gb-nKdYcCwrpGzulBspNoUc04-mE0qH6evApldd2bszpTuzK47szuCj5pc2H7h02_n_0TfEZ1vIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013443214</pqid></control><display><type>article</type><title>Minimax versions of the two-stage t test</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Krumbholz, Wolf ; Rohr, Andreas ; Vangjeli, Eno</creator><creatorcontrib>Krumbholz, Wolf ; Rohr, Andreas ; Vangjeli, Eno</creatorcontrib><description>Let X be a N ( μ, σ 2 ) distributed characteristic with unknown σ . We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-010-0339-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Minimax technique ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regular Article ; Sample size ; Sample variance ; Samples ; Statistical analysis ; Statistical methods ; Statistics ; Statistics for Business ; Studies ; Tests</subject><ispartof>Statistical papers (Berlin, Germany), 2012-05, Vol.53 (2), p.311-321</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a239530245aef5ca0fa001f623b4337b5c9975f12e5db58bb7ce69bae6e3bbf03</citedby><cites>FETCH-LOGICAL-c382t-a239530245aef5ca0fa001f623b4337b5c9975f12e5db58bb7ce69bae6e3bbf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-010-0339-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-010-0339-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krumbholz, Wolf</creatorcontrib><creatorcontrib>Rohr, Andreas</creatorcontrib><creatorcontrib>Vangjeli, Eno</creatorcontrib><title>Minimax versions of the two-stage t test</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Let X be a N ( μ, σ 2 ) distributed characteristic with unknown σ . We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.</description><subject>Algorithms</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Sample size</subject><subject>Sample variance</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Tests</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPAzEQhC0EEuHxA-hOokljWHvPPrtEES8piAZqyz7scFFyDvaFx7_H0VEgJKrd4puZ3SHkjMEFA2guMwBKToEBBURNYY9MmGRIdaPVPpmARk4FcHlIjnJeAjClFEzI9KHru7X9rN59yl3scxVDNbz6aviINA92UbZq8Hk4IQfBrrI__ZnH5Pnm-ml2R-ePt_ezqzltUfGBWo5aIPBaWB9EayHYkhUkR1cjNk60WjciMO7FixPKuab1UjvrpUfnAuAxmY6-mxTftiXYrLvc-tXK9j5us2GyYVyomsmCnv9Bl3Gb-nKdYcCwrpGzulBspNoUc04-mE0qH6evApldd2bszpTuzK47szuCj5pc2H7h02_n_0TfEZ1vIw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Krumbholz, Wolf</creator><creator>Rohr, Andreas</creator><creator>Vangjeli, Eno</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>H8D</scope></search><sort><creationdate>20120501</creationdate><title>Minimax versions of the two-stage t test</title><author>Krumbholz, Wolf ; Rohr, Andreas ; Vangjeli, Eno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a239530245aef5ca0fa001f623b4337b5c9975f12e5db58bb7ce69bae6e3bbf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Sample size</topic><topic>Sample variance</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krumbholz, Wolf</creatorcontrib><creatorcontrib>Rohr, Andreas</creatorcontrib><creatorcontrib>Vangjeli, Eno</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Aerospace Database</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krumbholz, Wolf</au><au>Rohr, Andreas</au><au>Vangjeli, Eno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimax versions of the two-stage t test</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>53</volume><issue>2</issue><spage>311</spage><epage>321</epage><pages>311-321</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Let X be a N ( μ, σ 2 ) distributed characteristic with unknown σ . We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00362-010-0339-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2012-05, Vol.53 (2), p.311-321
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_miscellaneous_1671258416
source SpringerLink Journals; Business Source Complete
subjects Algorithms
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Minimax technique
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Regular Article
Sample size
Sample variance
Samples
Statistical analysis
Statistical methods
Statistics
Statistics for Business
Studies
Tests
title Minimax versions of the two-stage t test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimax%20versions%20of%20the%20two-stage%20t%20test&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Krumbholz,%20Wolf&rft.date=2012-05-01&rft.volume=53&rft.issue=2&rft.spage=311&rft.epage=321&rft.pages=311-321&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-010-0339-0&rft_dat=%3Cproquest_cross%3E1671258416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013443214&rft_id=info:pmid/&rfr_iscdi=true