Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness

Pinhole collimators are widely used to image small organs and small animals because sensitivity and resolution improve as the distance between the aperture and the object decreases. Axial blurring is present in reconstruction of SPECT projection data when pinhole apertures follow a circular orbit be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2003-10, Vol.50 (5), p.1575-1583
Hauptverfasser: Metzler, S.D., Greer, K.L., Jaszczak, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1583
container_issue 5
container_start_page 1575
container_title IEEE transactions on nuclear science
container_volume 50
creator Metzler, S.D.
Greer, K.L.
Jaszczak, R.J.
description Pinhole collimators are widely used to image small organs and small animals because sensitivity and resolution improve as the distance between the aperture and the object decreases. Axial blurring is present in reconstruction of SPECT projection data when pinhole apertures follow a circular orbit because the object is incompletely sampled. For an object with constant axial extent, the blurring worsens as the radius of rotation (ROR) decreases. In contrast, helical orbits of pinhole collimators can give complete sampling at small ROR, where sensitivity and resolution are improved. Herein, a metric of sampling completeness is introduced. It is used to evaluate the sampling of an object as a function of ROR, axial position, and radial position for circular orbits. The metric is also used to determine the completely sampled volume for a helical orbit of a pinhole aperture. Experimental and computer-simulated projections of circular orbits and helical orbits are reconstructed, yielding similar results; helical orbits reduce axial blurring because of their sampling properties.
doi_str_mv 10.1109/TNS.2003.817948
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671256511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1236969</ieee_id><sourcerecordid>1671256511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-db9984fcf2cbae644eca7d77a715ea9901227b95b54f7e9cf1ed8f167898f1023</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKtnD14WD-Jl20w22STepFQrFBVajxLS7Gy7Jd2tm-3Bf29qBcGDl3kzzDcDM4-QS6ADAKqH8-fZgFGaDRRIzdUR6YEQKgUh1THpUQoq1VzrU3IWwjqWXFDRI-8T9JWzPtlW9arxmMxex6N5UjZtEjbW-9TWVdQkhmVVL-8Sm2ywWzXFN2KLosUQYiMJdrP1-8Q1McEO69g4Jyel9QEvfrRP3h7G89Eknb48Po3up6njkHdpsdBa8dKVzC0s5pyjs7KQ0koQaLWmwJhcaLEQvJSoXQlYqBJyqXQUyrI-uTns3bbNxw5DZzZVcOi9rbHZBcNUBnnGIIK3_4JxJzCRC9ij13_QdbNr63iG0YwxxSmVERoeINc2IbRYmm0bX9V-GqBmb4uJtpi9LeZgS5y4OkxUiPhLsyzXuc6-APvriHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922284007</pqid></control><display><type>article</type><title>Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness</title><source>IEEE Electronic Library (IEL)</source><creator>Metzler, S.D. ; Greer, K.L. ; Jaszczak, R.J.</creator><creatorcontrib>Metzler, S.D. ; Greer, K.L. ; Jaszczak, R.J.</creatorcontrib><description>Pinhole collimators are widely used to image small organs and small animals because sensitivity and resolution improve as the distance between the aperture and the object decreases. Axial blurring is present in reconstruction of SPECT projection data when pinhole apertures follow a circular orbit because the object is incompletely sampled. For an object with constant axial extent, the blurring worsens as the radius of rotation (ROR) decreases. In contrast, helical orbits of pinhole collimators can give complete sampling at small ROR, where sensitivity and resolution are improved. Herein, a metric of sampling completeness is introduced. It is used to evaluate the sampling of an object as a function of ROR, axial position, and radial position for circular orbits. The metric is also used to determine the completely sampled volume for a helical orbit of a pinhole aperture. Experimental and computer-simulated projections of circular orbits and helical orbits are reconstructed, yielding similar results; helical orbits reduce axial blurring because of their sampling properties.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2003.817948</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Animals ; Apertures ; Biomedical engineering ; Biomedical imaging ; Blurring ; Circular orbits ; Collimators ; Computed tomography ; Helical ; Image reconstruction ; Image sampling ; Orbits ; Pinholes ; Projection ; Sampling ; Sampling methods ; Single photon emission computed tomography</subject><ispartof>IEEE transactions on nuclear science, 2003-10, Vol.50 (5), p.1575-1583</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-db9984fcf2cbae644eca7d77a715ea9901227b95b54f7e9cf1ed8f167898f1023</citedby><cites>FETCH-LOGICAL-c416t-db9984fcf2cbae644eca7d77a715ea9901227b95b54f7e9cf1ed8f167898f1023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1236969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1236969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Metzler, S.D.</creatorcontrib><creatorcontrib>Greer, K.L.</creatorcontrib><creatorcontrib>Jaszczak, R.J.</creatorcontrib><title>Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Pinhole collimators are widely used to image small organs and small animals because sensitivity and resolution improve as the distance between the aperture and the object decreases. Axial blurring is present in reconstruction of SPECT projection data when pinhole apertures follow a circular orbit because the object is incompletely sampled. For an object with constant axial extent, the blurring worsens as the radius of rotation (ROR) decreases. In contrast, helical orbits of pinhole collimators can give complete sampling at small ROR, where sensitivity and resolution are improved. Herein, a metric of sampling completeness is introduced. It is used to evaluate the sampling of an object as a function of ROR, axial position, and radial position for circular orbits. The metric is also used to determine the completely sampled volume for a helical orbit of a pinhole aperture. Experimental and computer-simulated projections of circular orbits and helical orbits are reconstructed, yielding similar results; helical orbits reduce axial blurring because of their sampling properties.</description><subject>Animals</subject><subject>Apertures</subject><subject>Biomedical engineering</subject><subject>Biomedical imaging</subject><subject>Blurring</subject><subject>Circular orbits</subject><subject>Collimators</subject><subject>Computed tomography</subject><subject>Helical</subject><subject>Image reconstruction</subject><subject>Image sampling</subject><subject>Orbits</subject><subject>Pinholes</subject><subject>Projection</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Single photon emission computed tomography</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFLAzEQhYMoWKtnD14WD-Jl20w22STepFQrFBVajxLS7Gy7Jd2tm-3Bf29qBcGDl3kzzDcDM4-QS6ADAKqH8-fZgFGaDRRIzdUR6YEQKgUh1THpUQoq1VzrU3IWwjqWXFDRI-8T9JWzPtlW9arxmMxex6N5UjZtEjbW-9TWVdQkhmVVL-8Sm2ywWzXFN2KLosUQYiMJdrP1-8Q1McEO69g4Jyel9QEvfrRP3h7G89Eknb48Po3up6njkHdpsdBa8dKVzC0s5pyjs7KQ0koQaLWmwJhcaLEQvJSoXQlYqBJyqXQUyrI-uTns3bbNxw5DZzZVcOi9rbHZBcNUBnnGIIK3_4JxJzCRC9ij13_QdbNr63iG0YwxxSmVERoeINc2IbRYmm0bX9V-GqBmb4uJtpi9LeZgS5y4OkxUiPhLsyzXuc6-APvriHA</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Metzler, S.D.</creator><creator>Greer, K.L.</creator><creator>Jaszczak, R.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20031001</creationdate><title>Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness</title><author>Metzler, S.D. ; Greer, K.L. ; Jaszczak, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-db9984fcf2cbae644eca7d77a715ea9901227b95b54f7e9cf1ed8f167898f1023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Apertures</topic><topic>Biomedical engineering</topic><topic>Biomedical imaging</topic><topic>Blurring</topic><topic>Circular orbits</topic><topic>Collimators</topic><topic>Computed tomography</topic><topic>Helical</topic><topic>Image reconstruction</topic><topic>Image sampling</topic><topic>Orbits</topic><topic>Pinholes</topic><topic>Projection</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Single photon emission computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzler, S.D.</creatorcontrib><creatorcontrib>Greer, K.L.</creatorcontrib><creatorcontrib>Jaszczak, R.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Metzler, S.D.</au><au>Greer, K.L.</au><au>Jaszczak, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2003-10-01</date><risdate>2003</risdate><volume>50</volume><issue>5</issue><spage>1575</spage><epage>1583</epage><pages>1575-1583</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Pinhole collimators are widely used to image small organs and small animals because sensitivity and resolution improve as the distance between the aperture and the object decreases. Axial blurring is present in reconstruction of SPECT projection data when pinhole apertures follow a circular orbit because the object is incompletely sampled. For an object with constant axial extent, the blurring worsens as the radius of rotation (ROR) decreases. In contrast, helical orbits of pinhole collimators can give complete sampling at small ROR, where sensitivity and resolution are improved. Herein, a metric of sampling completeness is introduced. It is used to evaluate the sampling of an object as a function of ROR, axial position, and radial position for circular orbits. The metric is also used to determine the completely sampled volume for a helical orbit of a pinhole aperture. Experimental and computer-simulated projections of circular orbits and helical orbits are reconstructed, yielding similar results; helical orbits reduce axial blurring because of their sampling properties.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2003.817948</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2003-10, Vol.50 (5), p.1575-1583
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_1671256511
source IEEE Electronic Library (IEL)
subjects Animals
Apertures
Biomedical engineering
Biomedical imaging
Blurring
Circular orbits
Collimators
Computed tomography
Helical
Image reconstruction
Image sampling
Orbits
Pinholes
Projection
Sampling
Sampling methods
Single photon emission computed tomography
title Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helical%20pinhole%20SPECT%20for%20small-animal%20imaging:%20a%20method%20for%20addressing%20sampling%20completeness&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Metzler,%20S.D.&rft.date=2003-10-01&rft.volume=50&rft.issue=5&rft.spage=1575&rft.epage=1583&rft.pages=1575-1583&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2003.817948&rft_dat=%3Cproquest_RIE%3E1671256511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922284007&rft_id=info:pmid/&rft_ieee_id=1236969&rfr_iscdi=true