Multi-objective control optimization for semi-active vehicle suspensions

In this paper we demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. While the approach is applicable to a broad range of dynamic systems, this paper focuses on the control of semi-active vehicle suspensions. The two performance objecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2011-11, Vol.330 (23), p.5502-5516
Hauptverfasser: Crews, John H., Mattson, Michael G., Buckner, Gregory D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5516
container_issue 23
container_start_page 5502
container_title Journal of sound and vibration
container_volume 330
creator Crews, John H.
Mattson, Michael G.
Buckner, Gregory D.
description In this paper we demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. While the approach is applicable to a broad range of dynamic systems, this paper focuses on the control of semi-active vehicle suspensions. The two performance objectives considered are ride quality, as measured by absorbed power, and thermal performance, as measured by power dissipated in the suspension damper. A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. To facilitate convergence, the MOGA is initialized with popular algorithms such as skyhook control, feedback linearization, and sliding mode control. The MOGA creates a Pareto frontier of solutions, providing a benchmark for assessing the performance of other controllers in terms of both objectives. Furthermore, the MOGA provides insight into the remaining achievable gains in performance. ► We demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. ► A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. ► This method provides insights into controller tuning; it can be used to quantify remaining performance benefits. ► While the approach is broadly applicable, this paper focuses on the control of semi‐active vehicle suspensions. ► The two performance objectives considered are ride quality and dissipated power.
doi_str_mv 10.1016/j.jsv.2011.05.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671252722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X11004767</els_id><sourcerecordid>1671252722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3a76d47d150c06161818cafb8c23e8eb0efb1cf4bc2536f80e6c5ba0686d5bf13</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOH78AHfdCG5aX9Im7eBKBnWEETcK7kKavmBKpxnz2gH99XaYwaWrtzn3Xt5h7IpDxoGr2zZraZsJ4DwDmUGujtiMw1ymlVTVMZsBCJEWCj5O2RlRCwDzIi9mbPkydoNPQ92iHfwWExv6IYYuCZvBr_2PGXzoExdiQrj2qdlDW_z0tsOERtpgTxNCF-zEmY7w8nDP2fvjw9tima5en54X96vU5gqGNDelaoqy4RIsKK54xStrXF1ZkWOFNaCruXVFbYXMlasAlZW1AVWpRtaO5-fsZt-7ieFrRBr02pPFrjM9hpE0VyUXUpRCTCjfozYGoohOb6Jfm_itOeidNd3qyZreWdMg9WRtylwf6g1Z07loeuvpLyiKYl6KMp-4uz2H069bj1GT9dhbbHycTOom-H9WfgHVZoOS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671252722</pqid></control><display><type>article</type><title>Multi-objective control optimization for semi-active vehicle suspensions</title><source>Elsevier ScienceDirect Journals</source><creator>Crews, John H. ; Mattson, Michael G. ; Buckner, Gregory D.</creator><creatorcontrib>Crews, John H. ; Mattson, Michael G. ; Buckner, Gregory D.</creatorcontrib><description>In this paper we demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. While the approach is applicable to a broad range of dynamic systems, this paper focuses on the control of semi-active vehicle suspensions. The two performance objectives considered are ride quality, as measured by absorbed power, and thermal performance, as measured by power dissipated in the suspension damper. A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. To facilitate convergence, the MOGA is initialized with popular algorithms such as skyhook control, feedback linearization, and sliding mode control. The MOGA creates a Pareto frontier of solutions, providing a benchmark for assessing the performance of other controllers in terms of both objectives. Furthermore, the MOGA provides insight into the remaining achievable gains in performance. ► We demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. ► A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. ► This method provides insights into controller tuning; it can be used to quantify remaining performance benefits. ► While the approach is broadly applicable, this paper focuses on the control of semi‐active vehicle suspensions. ► The two performance objectives considered are ride quality and dissipated power.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2011.05.036</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Genetic algorithms ; Machine components ; Mechanical engineering. Machine design ; Optimization ; Skyhook control ; Sliding mode control ; Springs and dampers ; Vehicles</subject><ispartof>Journal of sound and vibration, 2011-11, Vol.330 (23), p.5502-5516</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3a76d47d150c06161818cafb8c23e8eb0efb1cf4bc2536f80e6c5ba0686d5bf13</citedby><cites>FETCH-LOGICAL-c360t-3a76d47d150c06161818cafb8c23e8eb0efb1cf4bc2536f80e6c5ba0686d5bf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2011.05.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24497273$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crews, John H.</creatorcontrib><creatorcontrib>Mattson, Michael G.</creatorcontrib><creatorcontrib>Buckner, Gregory D.</creatorcontrib><title>Multi-objective control optimization for semi-active vehicle suspensions</title><title>Journal of sound and vibration</title><description>In this paper we demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. While the approach is applicable to a broad range of dynamic systems, this paper focuses on the control of semi-active vehicle suspensions. The two performance objectives considered are ride quality, as measured by absorbed power, and thermal performance, as measured by power dissipated in the suspension damper. A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. To facilitate convergence, the MOGA is initialized with popular algorithms such as skyhook control, feedback linearization, and sliding mode control. The MOGA creates a Pareto frontier of solutions, providing a benchmark for assessing the performance of other controllers in terms of both objectives. Furthermore, the MOGA provides insight into the remaining achievable gains in performance. ► We demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. ► A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. ► This method provides insights into controller tuning; it can be used to quantify remaining performance benefits. ► While the approach is broadly applicable, this paper focuses on the control of semi‐active vehicle suspensions. ► The two performance objectives considered are ride quality and dissipated power.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Machine components</subject><subject>Mechanical engineering. Machine design</subject><subject>Optimization</subject><subject>Skyhook control</subject><subject>Sliding mode control</subject><subject>Springs and dampers</subject><subject>Vehicles</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOH78AHfdCG5aX9Im7eBKBnWEETcK7kKavmBKpxnz2gH99XaYwaWrtzn3Xt5h7IpDxoGr2zZraZsJ4DwDmUGujtiMw1ymlVTVMZsBCJEWCj5O2RlRCwDzIi9mbPkydoNPQ92iHfwWExv6IYYuCZvBr_2PGXzoExdiQrj2qdlDW_z0tsOERtpgTxNCF-zEmY7w8nDP2fvjw9tima5en54X96vU5gqGNDelaoqy4RIsKK54xStrXF1ZkWOFNaCruXVFbYXMlasAlZW1AVWpRtaO5-fsZt-7ieFrRBr02pPFrjM9hpE0VyUXUpRCTCjfozYGoohOb6Jfm_itOeidNd3qyZreWdMg9WRtylwf6g1Z07loeuvpLyiKYl6KMp-4uz2H069bj1GT9dhbbHycTOom-H9WfgHVZoOS</recordid><startdate>20111107</startdate><enddate>20111107</enddate><creator>Crews, John H.</creator><creator>Mattson, Michael G.</creator><creator>Buckner, Gregory D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20111107</creationdate><title>Multi-objective control optimization for semi-active vehicle suspensions</title><author>Crews, John H. ; Mattson, Michael G. ; Buckner, Gregory D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3a76d47d150c06161818cafb8c23e8eb0efb1cf4bc2536f80e6c5ba0686d5bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Machine components</topic><topic>Mechanical engineering. Machine design</topic><topic>Optimization</topic><topic>Skyhook control</topic><topic>Sliding mode control</topic><topic>Springs and dampers</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crews, John H.</creatorcontrib><creatorcontrib>Mattson, Michael G.</creatorcontrib><creatorcontrib>Buckner, Gregory D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crews, John H.</au><au>Mattson, Michael G.</au><au>Buckner, Gregory D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective control optimization for semi-active vehicle suspensions</atitle><jtitle>Journal of sound and vibration</jtitle><date>2011-11-07</date><risdate>2011</risdate><volume>330</volume><issue>23</issue><spage>5502</spage><epage>5516</epage><pages>5502-5516</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>In this paper we demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. While the approach is applicable to a broad range of dynamic systems, this paper focuses on the control of semi-active vehicle suspensions. The two performance objectives considered are ride quality, as measured by absorbed power, and thermal performance, as measured by power dissipated in the suspension damper. A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. To facilitate convergence, the MOGA is initialized with popular algorithms such as skyhook control, feedback linearization, and sliding mode control. The MOGA creates a Pareto frontier of solutions, providing a benchmark for assessing the performance of other controllers in terms of both objectives. Furthermore, the MOGA provides insight into the remaining achievable gains in performance. ► We demonstrate a method for determining the optimality of control algorithms based on multiple performance objectives. ► A multi-objective genetic algorithm (MOGA) is used to establish the limits of controller performance. ► This method provides insights into controller tuning; it can be used to quantify remaining performance benefits. ► While the approach is broadly applicable, this paper focuses on the control of semi‐active vehicle suspensions. ► The two performance objectives considered are ride quality and dissipated power.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2011.05.036</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2011-11, Vol.330 (23), p.5502-5516
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_1671252722
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Dynamical systems
Dynamics
Exact sciences and technology
Genetic algorithms
Machine components
Mechanical engineering. Machine design
Optimization
Skyhook control
Sliding mode control
Springs and dampers
Vehicles
title Multi-objective control optimization for semi-active vehicle suspensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20control%20optimization%20for%20semi-active%20vehicle%20suspensions&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Crews,%20John%20H.&rft.date=2011-11-07&rft.volume=330&rft.issue=23&rft.spage=5502&rft.epage=5516&rft.pages=5502-5516&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2011.05.036&rft_dat=%3Cproquest_cross%3E1671252722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671252722&rft_id=info:pmid/&rft_els_id=S0022460X11004767&rfr_iscdi=true