High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter
This paper describes InP HBTs with a novel emitter simply consisting of a degenerately doped n + -InGaAs layer and an undoped InP thin layer. An n + -InP layer is not necessary because the quasi-Femi level in the n + -InGaAs layer is high enough to exceed the conduction band discontinuity between th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2010-02, Vol.57 (2), p.373-379 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 2 |
container_start_page | 373 |
container_title | IEEE transactions on electron devices |
container_volume | 57 |
creator | Kashio, N. Kurishima, K. Fukai, Y.K. Ida, M. Yamahata, S. |
description | This paper describes InP HBTs with a novel emitter simply consisting of a degenerately doped n + -InGaAs layer and an undoped InP thin layer. An n + -InP layer is not necessary because the quasi-Femi level in the n + -InGaAs layer is high enough to exceed the conduction band discontinuity between the n + -InGaAs layer and the undoped InP layer. In the proposed structure, a thin ( ~ 10 nm) ledge structure can easily be fabricated by etching the n + -InGaAs layer. The fabricated HBTs with a 15-nm-thick ledge structure provide a high collector current density of over 6 mA/¿m 2 . There is almost no degradation of current gain, although the emitter width is reduced to as small as 0.5 ¿m. The HBTs also exhibit an ft of 324 GHz at a collector current density of 5.5 mA/¿m 2 , which is comparable with that of HBTs with a conventional emitter consisting of an n + -InGaAs layer, an n + -InP layer, and an n-InP layer. From the results of accelerated life tests, the activation energy of the degradation in HBTs is estimated to be around 1.8 eV, and the extrapolated mean time to failure is estimated to be over 10 8 h at a junction temperature of 125°C. |
doi_str_mv | 10.1109/TED.2009.2037461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671248956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5353659</ieee_id><sourcerecordid>2289871491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-bc38fd5464ee325e2ec5484c1e6bd3479e446efd2ef2c85e202062df8382cece3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3wcsiiF625nuTo63VCqKiFY8hzc7alO1u3WyF_vemtvTgwcs8hvd7A_MQOiW4RwjW1-PhbY9irONgGZdkD3WIEFmqJZf7qIMxUalmih2ioxBmcZWc0w4ajPznNH1bAOSJrfLkd32F0tuJL327Sh6ql7RvQ7RH_XFIPnw7TWzyVH9DmQznvm2hOUYHhS0DnGy1i97vhuPBKH18vn8Y3DymjinRppMoRS645ACMCqDgBFfcEZCTnPFMA-cSipxCQZ2KPqZY0rxQTFEHDlgXXW7uLpr6awmhNXMfHJSlraBeBqMyESNUkUhe_UsSmRHKlRYyoud_0Fm9bKr4h1FCSpJFNEJ4A7mmDqGBwiwaP7fNyhBs1vWbWL9Z12-29cfIxfauDc6WRWMr58MuRynXjHARubMN5wFgZwsmmBSa_QAy54qC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856617671</pqid></control><display><type>article</type><title>High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter</title><source>IEEE Electronic Library (IEL)</source><creator>Kashio, N. ; Kurishima, K. ; Fukai, Y.K. ; Ida, M. ; Yamahata, S.</creator><creatorcontrib>Kashio, N. ; Kurishima, K. ; Fukai, Y.K. ; Ida, M. ; Yamahata, S.</creatorcontrib><description>This paper describes InP HBTs with a novel emitter simply consisting of a degenerately doped n + -InGaAs layer and an undoped InP thin layer. An n + -InP layer is not necessary because the quasi-Femi level in the n + -InGaAs layer is high enough to exceed the conduction band discontinuity between the n + -InGaAs layer and the undoped InP layer. In the proposed structure, a thin ( ~ 10 nm) ledge structure can easily be fabricated by etching the n + -InGaAs layer. The fabricated HBTs with a 15-nm-thick ledge structure provide a high collector current density of over 6 mA/¿m 2 . There is almost no degradation of current gain, although the emitter width is reduced to as small as 0.5 ¿m. The HBTs also exhibit an ft of 324 GHz at a collector current density of 5.5 mA/¿m 2 , which is comparable with that of HBTs with a conventional emitter consisting of an n + -InGaAs layer, an n + -InP layer, and an n-InP layer. From the results of accelerated life tests, the activation energy of the degradation in HBTs is estimated to be around 1.8 eV, and the extrapolated mean time to failure is estimated to be over 10 8 h at a junction temperature of 125°C.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2037461</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accumulators ; Applied sciences ; Collectors ; Current density ; Current gain ; Degradation ; Electronics ; Emittance ; Emitters (electron) ; Exact sciences and technology ; Heterojunction bipolar transistors ; Indium gallium arsenide ; Indium phosphide ; Indium phosphides ; InP heterojunction bipolar transistor (HBT) ; Junctions ; ledge passivation ; Ledges ; Reliability ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stress ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2010-02, Vol.57 (2), p.373-379</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-bc38fd5464ee325e2ec5484c1e6bd3479e446efd2ef2c85e202062df8382cece3</citedby><cites>FETCH-LOGICAL-c385t-bc38fd5464ee325e2ec5484c1e6bd3479e446efd2ef2c85e202062df8382cece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5353659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5353659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22493145$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashio, N.</creatorcontrib><creatorcontrib>Kurishima, K.</creatorcontrib><creatorcontrib>Fukai, Y.K.</creatorcontrib><creatorcontrib>Ida, M.</creatorcontrib><creatorcontrib>Yamahata, S.</creatorcontrib><title>High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper describes InP HBTs with a novel emitter simply consisting of a degenerately doped n + -InGaAs layer and an undoped InP thin layer. An n + -InP layer is not necessary because the quasi-Femi level in the n + -InGaAs layer is high enough to exceed the conduction band discontinuity between the n + -InGaAs layer and the undoped InP layer. In the proposed structure, a thin ( ~ 10 nm) ledge structure can easily be fabricated by etching the n + -InGaAs layer. The fabricated HBTs with a 15-nm-thick ledge structure provide a high collector current density of over 6 mA/¿m 2 . There is almost no degradation of current gain, although the emitter width is reduced to as small as 0.5 ¿m. The HBTs also exhibit an ft of 324 GHz at a collector current density of 5.5 mA/¿m 2 , which is comparable with that of HBTs with a conventional emitter consisting of an n + -InGaAs layer, an n + -InP layer, and an n-InP layer. From the results of accelerated life tests, the activation energy of the degradation in HBTs is estimated to be around 1.8 eV, and the extrapolated mean time to failure is estimated to be over 10 8 h at a junction temperature of 125°C.</description><subject>Accumulators</subject><subject>Applied sciences</subject><subject>Collectors</subject><subject>Current density</subject><subject>Current gain</subject><subject>Degradation</subject><subject>Electronics</subject><subject>Emittance</subject><subject>Emitters (electron)</subject><subject>Exact sciences and technology</subject><subject>Heterojunction bipolar transistors</subject><subject>Indium gallium arsenide</subject><subject>Indium phosphide</subject><subject>Indium phosphides</subject><subject>InP heterojunction bipolar transistor (HBT)</subject><subject>Junctions</subject><subject>ledge passivation</subject><subject>Ledges</subject><subject>Reliability</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stress</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3wcsiiF625nuTo63VCqKiFY8hzc7alO1u3WyF_vemtvTgwcs8hvd7A_MQOiW4RwjW1-PhbY9irONgGZdkD3WIEFmqJZf7qIMxUalmih2ioxBmcZWc0w4ajPznNH1bAOSJrfLkd32F0tuJL327Sh6ql7RvQ7RH_XFIPnw7TWzyVH9DmQznvm2hOUYHhS0DnGy1i97vhuPBKH18vn8Y3DymjinRppMoRS645ACMCqDgBFfcEZCTnPFMA-cSipxCQZ2KPqZY0rxQTFEHDlgXXW7uLpr6awmhNXMfHJSlraBeBqMyESNUkUhe_UsSmRHKlRYyoud_0Fm9bKr4h1FCSpJFNEJ4A7mmDqGBwiwaP7fNyhBs1vWbWL9Z12-29cfIxfauDc6WRWMr58MuRynXjHARubMN5wFgZwsmmBSa_QAy54qC</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Kashio, N.</creator><creator>Kurishima, K.</creator><creator>Fukai, Y.K.</creator><creator>Ida, M.</creator><creator>Yamahata, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20100201</creationdate><title>High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter</title><author>Kashio, N. ; Kurishima, K. ; Fukai, Y.K. ; Ida, M. ; Yamahata, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-bc38fd5464ee325e2ec5484c1e6bd3479e446efd2ef2c85e202062df8382cece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accumulators</topic><topic>Applied sciences</topic><topic>Collectors</topic><topic>Current density</topic><topic>Current gain</topic><topic>Degradation</topic><topic>Electronics</topic><topic>Emittance</topic><topic>Emitters (electron)</topic><topic>Exact sciences and technology</topic><topic>Heterojunction bipolar transistors</topic><topic>Indium gallium arsenide</topic><topic>Indium phosphide</topic><topic>Indium phosphides</topic><topic>InP heterojunction bipolar transistor (HBT)</topic><topic>Junctions</topic><topic>ledge passivation</topic><topic>Ledges</topic><topic>Reliability</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stress</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashio, N.</creatorcontrib><creatorcontrib>Kurishima, K.</creatorcontrib><creatorcontrib>Fukai, Y.K.</creatorcontrib><creatorcontrib>Ida, M.</creatorcontrib><creatorcontrib>Yamahata, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kashio, N.</au><au>Kurishima, K.</au><au>Fukai, Y.K.</au><au>Ida, M.</au><au>Yamahata, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>57</volume><issue>2</issue><spage>373</spage><epage>379</epage><pages>373-379</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper describes InP HBTs with a novel emitter simply consisting of a degenerately doped n + -InGaAs layer and an undoped InP thin layer. An n + -InP layer is not necessary because the quasi-Femi level in the n + -InGaAs layer is high enough to exceed the conduction band discontinuity between the n + -InGaAs layer and the undoped InP layer. In the proposed structure, a thin ( ~ 10 nm) ledge structure can easily be fabricated by etching the n + -InGaAs layer. The fabricated HBTs with a 15-nm-thick ledge structure provide a high collector current density of over 6 mA/¿m 2 . There is almost no degradation of current gain, although the emitter width is reduced to as small as 0.5 ¿m. The HBTs also exhibit an ft of 324 GHz at a collector current density of 5.5 mA/¿m 2 , which is comparable with that of HBTs with a conventional emitter consisting of an n + -InGaAs layer, an n + -InP layer, and an n-InP layer. From the results of accelerated life tests, the activation energy of the degradation in HBTs is estimated to be around 1.8 eV, and the extrapolated mean time to failure is estimated to be over 10 8 h at a junction temperature of 125°C.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2037461</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2010-02, Vol.57 (2), p.373-379 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671248956 |
source | IEEE Electronic Library (IEL) |
subjects | Accumulators Applied sciences Collectors Current density Current gain Degradation Electronics Emittance Emitters (electron) Exact sciences and technology Heterojunction bipolar transistors Indium gallium arsenide Indium phosphide Indium phosphides InP heterojunction bipolar transistor (HBT) Junctions ledge passivation Ledges Reliability Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stress Transistors |
title | High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Speed%20and%20High-Reliability%20InP-Based%20HBTs%20With%20a%20Novel%20Emitter&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kashio,%20N.&rft.date=2010-02-01&rft.volume=57&rft.issue=2&rft.spage=373&rft.epage=379&rft.pages=373-379&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2037461&rft_dat=%3Cproquest_RIE%3E2289871491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856617671&rft_id=info:pmid/&rft_ieee_id=5353659&rfr_iscdi=true |