Estimating reliability parameters under insufficient information
The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity a...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2010-05, Vol.46 (3), p.443-459 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | 3 |
container_start_page | 443 |
container_title | Cybernetics and systems analysis |
container_volume | 46 |
creator | Golodnikov, A. N. Ermoliev, Yu. M. Knopov, P. S. |
description | The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model. |
doi_str_mv | 10.1007/s10559-010-9219-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671246953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357758473</galeid><sourcerecordid>A357758473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</originalsourceid><addsrcrecordid>eNp1kV9LwzAUxYsoOKcfwLfikz50Jk3TJG-OMXUwEPzzHNI0KRltOpMU3Lc3pYJMkDzc5PI7l5N7kuQaggUEgNx7CDBmGYAgYzlkGTtJZhATlFGEyGm8gxJkALHyPLnwfgcAQIDQWfKw9sF0IhjbpE61RlSmNeGQ7oUTnQrK-XSwtXKpsX7Q2kijbIgP3btR1dvL5EyL1qurnzpPPh7X76vnbPvytFktt5kschgyWguYS1EjzKRgsmaAFloLpEtaCgpptBobFKOKqZLCqqCoqDWpkNYFQ2WO5sntNHfv-s9B-cA746VqW2FVP3gOSwLzomQYRfTmD7rrB2ejO44BRDkrGIzQYoIa0So-fig4IeOpVWdkb5U2sb9EmBBMCzJOvTsSRCaor9CIwXu-eXs9ZuHEStd775Tmexe37A4cAj7mxae8eMyLj3lxFjX5pPGRtY1yv67_F30DzlOWvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>501329491</pqid></control><display><type>article</type><title>Estimating reliability parameters under insufficient information</title><source>SpringerLink Journals</source><creator>Golodnikov, A. N. ; Ermoliev, Yu. M. ; Knopov, P. S.</creator><creatorcontrib>Golodnikov, A. N. ; Ermoliev, Yu. M. ; Knopov, P. S.</creatorcontrib><description>The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-010-9219-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accidents ; Algorithms ; Analysis ; Artificial Intelligence ; Bayesian analysis ; Control ; Cybernetics ; Estimates ; Failure rates ; Lower bounds ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Nuclear energy ; Nuclear power plants ; Optimization ; Probability ; Processor Architectures ; Quantiles ; Random variables ; Risk assessment ; Sensitivity analysis ; Software Engineering/Programming and Operating Systems ; Studies ; Systems analysis ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2010-05, Vol.46 (3), p.443-459</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</citedby><cites>FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-010-9219-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-010-9219-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Golodnikov, A. N.</creatorcontrib><creatorcontrib>Ermoliev, Yu. M.</creatorcontrib><creatorcontrib>Knopov, P. S.</creatorcontrib><title>Estimating reliability parameters under insufficient information</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Control</subject><subject>Cybernetics</subject><subject>Estimates</subject><subject>Failure rates</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Probability</subject><subject>Processor Architectures</subject><subject>Quantiles</subject><subject>Random variables</subject><subject>Risk assessment</subject><subject>Sensitivity analysis</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV9LwzAUxYsoOKcfwLfikz50Jk3TJG-OMXUwEPzzHNI0KRltOpMU3Lc3pYJMkDzc5PI7l5N7kuQaggUEgNx7CDBmGYAgYzlkGTtJZhATlFGEyGm8gxJkALHyPLnwfgcAQIDQWfKw9sF0IhjbpE61RlSmNeGQ7oUTnQrK-XSwtXKpsX7Q2kijbIgP3btR1dvL5EyL1qurnzpPPh7X76vnbPvytFktt5kschgyWguYS1EjzKRgsmaAFloLpEtaCgpptBobFKOKqZLCqqCoqDWpkNYFQ2WO5sntNHfv-s9B-cA746VqW2FVP3gOSwLzomQYRfTmD7rrB2ejO44BRDkrGIzQYoIa0So-fig4IeOpVWdkb5U2sb9EmBBMCzJOvTsSRCaor9CIwXu-eXs9ZuHEStd775Tmexe37A4cAj7mxae8eMyLj3lxFjX5pPGRtY1yv67_F30DzlOWvw</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Golodnikov, A. N.</creator><creator>Ermoliev, Yu. M.</creator><creator>Knopov, P. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>Estimating reliability parameters under insufficient information</title><author>Golodnikov, A. N. ; Ermoliev, Yu. M. ; Knopov, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Control</topic><topic>Cybernetics</topic><topic>Estimates</topic><topic>Failure rates</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Probability</topic><topic>Processor Architectures</topic><topic>Quantiles</topic><topic>Random variables</topic><topic>Risk assessment</topic><topic>Sensitivity analysis</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golodnikov, A. N.</creatorcontrib><creatorcontrib>Ermoliev, Yu. M.</creatorcontrib><creatorcontrib>Knopov, P. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golodnikov, A. N.</au><au>Ermoliev, Yu. M.</au><au>Knopov, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating reliability parameters under insufficient information</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><spage>443</spage><epage>459</epage><pages>443-459</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-010-9219-9</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2010-05, Vol.46 (3), p.443-459 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671246953 |
source | SpringerLink Journals |
subjects | Accidents Algorithms Analysis Artificial Intelligence Bayesian analysis Control Cybernetics Estimates Failure rates Lower bounds Mathematical models Mathematics Mathematics and Statistics Methods Nuclear energy Nuclear power plants Optimization Probability Processor Architectures Quantiles Random variables Risk assessment Sensitivity analysis Software Engineering/Programming and Operating Systems Studies Systems analysis Systems Theory |
title | Estimating reliability parameters under insufficient information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20reliability%20parameters%20under%20insufficient%20information&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Golodnikov,%20A.%20N.&rft.date=2010-05-01&rft.volume=46&rft.issue=3&rft.spage=443&rft.epage=459&rft.pages=443-459&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-010-9219-9&rft_dat=%3Cgale_proqu%3EA357758473%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=501329491&rft_id=info:pmid/&rft_galeid=A357758473&rfr_iscdi=true |