Estimating reliability parameters under insufficient information

The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2010-05, Vol.46 (3), p.443-459
Hauptverfasser: Golodnikov, A. N., Ermoliev, Yu. M., Knopov, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 3
container_start_page 443
container_title Cybernetics and systems analysis
container_volume 46
creator Golodnikov, A. N.
Ermoliev, Yu. M.
Knopov, P. S.
description The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.
doi_str_mv 10.1007/s10559-010-9219-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671246953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357758473</galeid><sourcerecordid>A357758473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</originalsourceid><addsrcrecordid>eNp1kV9LwzAUxYsoOKcfwLfikz50Jk3TJG-OMXUwEPzzHNI0KRltOpMU3Lc3pYJMkDzc5PI7l5N7kuQaggUEgNx7CDBmGYAgYzlkGTtJZhATlFGEyGm8gxJkALHyPLnwfgcAQIDQWfKw9sF0IhjbpE61RlSmNeGQ7oUTnQrK-XSwtXKpsX7Q2kijbIgP3btR1dvL5EyL1qurnzpPPh7X76vnbPvytFktt5kschgyWguYS1EjzKRgsmaAFloLpEtaCgpptBobFKOKqZLCqqCoqDWpkNYFQ2WO5sntNHfv-s9B-cA746VqW2FVP3gOSwLzomQYRfTmD7rrB2ejO44BRDkrGIzQYoIa0So-fig4IeOpVWdkb5U2sb9EmBBMCzJOvTsSRCaor9CIwXu-eXs9ZuHEStd775Tmexe37A4cAj7mxae8eMyLj3lxFjX5pPGRtY1yv67_F30DzlOWvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>501329491</pqid></control><display><type>article</type><title>Estimating reliability parameters under insufficient information</title><source>SpringerLink Journals</source><creator>Golodnikov, A. N. ; Ermoliev, Yu. M. ; Knopov, P. S.</creator><creatorcontrib>Golodnikov, A. N. ; Ermoliev, Yu. M. ; Knopov, P. S.</creatorcontrib><description>The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-010-9219-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accidents ; Algorithms ; Analysis ; Artificial Intelligence ; Bayesian analysis ; Control ; Cybernetics ; Estimates ; Failure rates ; Lower bounds ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Nuclear energy ; Nuclear power plants ; Optimization ; Probability ; Processor Architectures ; Quantiles ; Random variables ; Risk assessment ; Sensitivity analysis ; Software Engineering/Programming and Operating Systems ; Studies ; Systems analysis ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2010-05, Vol.46 (3), p.443-459</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</citedby><cites>FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-010-9219-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-010-9219-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Golodnikov, A. N.</creatorcontrib><creatorcontrib>Ermoliev, Yu. M.</creatorcontrib><creatorcontrib>Knopov, P. S.</creatorcontrib><title>Estimating reliability parameters under insufficient information</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Control</subject><subject>Cybernetics</subject><subject>Estimates</subject><subject>Failure rates</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Optimization</subject><subject>Probability</subject><subject>Processor Architectures</subject><subject>Quantiles</subject><subject>Random variables</subject><subject>Risk assessment</subject><subject>Sensitivity analysis</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV9LwzAUxYsoOKcfwLfikz50Jk3TJG-OMXUwEPzzHNI0KRltOpMU3Lc3pYJMkDzc5PI7l5N7kuQaggUEgNx7CDBmGYAgYzlkGTtJZhATlFGEyGm8gxJkALHyPLnwfgcAQIDQWfKw9sF0IhjbpE61RlSmNeGQ7oUTnQrK-XSwtXKpsX7Q2kijbIgP3btR1dvL5EyL1qurnzpPPh7X76vnbPvytFktt5kschgyWguYS1EjzKRgsmaAFloLpEtaCgpptBobFKOKqZLCqqCoqDWpkNYFQ2WO5sntNHfv-s9B-cA746VqW2FVP3gOSwLzomQYRfTmD7rrB2ejO44BRDkrGIzQYoIa0So-fig4IeOpVWdkb5U2sb9EmBBMCzJOvTsSRCaor9CIwXu-eXs9ZuHEStd775Tmexe37A4cAj7mxae8eMyLj3lxFjX5pPGRtY1yv67_F30DzlOWvw</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Golodnikov, A. N.</creator><creator>Ermoliev, Yu. M.</creator><creator>Knopov, P. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>Estimating reliability parameters under insufficient information</title><author>Golodnikov, A. N. ; Ermoliev, Yu. M. ; Knopov, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8da12cad359ca9cd9084ffa3f686a81857384f853b9e681b4834df7b3ff493623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Control</topic><topic>Cybernetics</topic><topic>Estimates</topic><topic>Failure rates</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Optimization</topic><topic>Probability</topic><topic>Processor Architectures</topic><topic>Quantiles</topic><topic>Random variables</topic><topic>Risk assessment</topic><topic>Sensitivity analysis</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golodnikov, A. N.</creatorcontrib><creatorcontrib>Ermoliev, Yu. M.</creatorcontrib><creatorcontrib>Knopov, P. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golodnikov, A. N.</au><au>Ermoliev, Yu. M.</au><au>Knopov, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating reliability parameters under insufficient information</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><spage>443</spage><epage>459</epage><pages>443-459</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>The paper presents an algorithm to search for the lower bound of the Bayesian estimate of the parameter of exponential distribution in the case where it is known that a priori distribution belongs to the class of all distribution functions with two equal quantiles. This problem arises in sensivity analysis of Bayesian estimates of failure rates to the choice of a priori distribution in the exponential failure model.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-010-9219-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2010-05, Vol.46 (3), p.443-459
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_miscellaneous_1671246953
source SpringerLink Journals
subjects Accidents
Algorithms
Analysis
Artificial Intelligence
Bayesian analysis
Control
Cybernetics
Estimates
Failure rates
Lower bounds
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Nuclear energy
Nuclear power plants
Optimization
Probability
Processor Architectures
Quantiles
Random variables
Risk assessment
Sensitivity analysis
Software Engineering/Programming and Operating Systems
Studies
Systems analysis
Systems Theory
title Estimating reliability parameters under insufficient information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20reliability%20parameters%20under%20insufficient%20information&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Golodnikov,%20A.%20N.&rft.date=2010-05-01&rft.volume=46&rft.issue=3&rft.spage=443&rft.epage=459&rft.pages=443-459&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-010-9219-9&rft_dat=%3Cgale_proqu%3EA357758473%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=501329491&rft_id=info:pmid/&rft_galeid=A357758473&rfr_iscdi=true