Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process

In the petrochemical industry, the product quality reflects the commercial and operational performance of a manufacturing process. However, real-time measurement of product quality is generally difficult. Online prediction of quality using readily available, frequent process measurements would be be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2010-02, Vol.6 (1), p.11-17
Hauptverfasser: Wang, D., Jun Liu, Srinivasan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 11
container_title IEEE transactions on industrial informatics
container_volume 6
creator Wang, D.
Jun Liu
Srinivasan, R.
description In the petrochemical industry, the product quality reflects the commercial and operational performance of a manufacturing process. However, real-time measurement of product quality is generally difficult. Online prediction of quality using readily available, frequent process measurements would be beneficial in terms of operation and quality control. In this paper, a novel soft sensor technology based on partial least squares (PLS) regression is developed and applied to a refining process for quality prediction. The modeling process is described, with emphasis on data preprocessing, multivariate-outlier detection and variables selection. Enhancement of PLS strategy is also discussed for taking into account the dynamics in the process data. The proposed approach is applied to data from a refining process and the performance of the resulting soft sensor is evaluated by comparison with laboratory data and analyzer measurements.
doi_str_mv 10.1109/TII.2009.2025124
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671244264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5184939</ieee_id><sourcerecordid>2543272921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-294d81a9e21544528ca70080e74dd84990d3ca9ce55bc99f318cde62da2a32a53</originalsourceid><addsrcrecordid>eNp9kUtPwzAMxyMEEmNwR-JScYFLh_Nqm-O08Zg0xGPjHIXUhUxbO5IWad-eTJs4cODih_yzZftPyDmFAaWgbuaTyYABqGiYpEwckB5VgqYAEg5jLCVNOQN-TE5CWADwHLjqkcexaU069u4b62TWVG0ywzo0Phmu174x9jOpYvLSmaVrN8mzx9LZ1jV14urEJK9YudrVH7HQWAzhlBxVZhnwbO_75O3udj56SKdP95PRcJpaLmWbMiXKghqFjEohJCusyQEKwFyUZSGUgpJboyxK-W6VqjgtbIkZKw0znBnJ--RqNzfu-NVhaPXKBYvLpamx6YLOBc8ymhdZJK__JWmWx2cJlomIXv5BF03n63iHVpQqxVTGIgQ7yPomBI-VXnu3Mn6jKeitEDoKobdC6L0QseVi1-IQ8ReXNB7KFf8BAzuB3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911992962</pqid></control><display><type>article</type><title>Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process</title><source>IEEE Xplore</source><creator>Wang, D. ; Jun Liu ; Srinivasan, R.</creator><creatorcontrib>Wang, D. ; Jun Liu ; Srinivasan, R.</creatorcontrib><description>In the petrochemical industry, the product quality reflects the commercial and operational performance of a manufacturing process. However, real-time measurement of product quality is generally difficult. Online prediction of quality using readily available, frequent process measurements would be beneficial in terms of operation and quality control. In this paper, a novel soft sensor technology based on partial least squares (PLS) regression is developed and applied to a refining process for quality prediction. The modeling process is described, with emphasis on data preprocessing, multivariate-outlier detection and variables selection. Enhancement of PLS strategy is also discussed for taking into account the dynamics in the process data. The proposed approach is applied to data from a refining process and the performance of the resulting soft sensor is evaluated by comparison with laboratory data and analyzer measurements.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2009.2025124</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chemical industry ; Data analysis ; Data preprocessing ; Laboratories ; Least squares method ; Least squares methods ; Manufacturing industries ; Manufacturing processes ; Mathematical models ; On-line systems ; Outliers ; partial least squares ; Petrochemicals ; Preprocessing ; Quality control ; quality prediction ; Refining ; refining process ; Regression ; Sensors ; soft sensor ; Strategy</subject><ispartof>IEEE transactions on industrial informatics, 2010-02, Vol.6 (1), p.11-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-294d81a9e21544528ca70080e74dd84990d3ca9ce55bc99f318cde62da2a32a53</citedby><cites>FETCH-LOGICAL-c355t-294d81a9e21544528ca70080e74dd84990d3ca9ce55bc99f318cde62da2a32a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5184939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5184939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, D.</creatorcontrib><creatorcontrib>Jun Liu</creatorcontrib><creatorcontrib>Srinivasan, R.</creatorcontrib><title>Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In the petrochemical industry, the product quality reflects the commercial and operational performance of a manufacturing process. However, real-time measurement of product quality is generally difficult. Online prediction of quality using readily available, frequent process measurements would be beneficial in terms of operation and quality control. In this paper, a novel soft sensor technology based on partial least squares (PLS) regression is developed and applied to a refining process for quality prediction. The modeling process is described, with emphasis on data preprocessing, multivariate-outlier detection and variables selection. Enhancement of PLS strategy is also discussed for taking into account the dynamics in the process data. The proposed approach is applied to data from a refining process and the performance of the resulting soft sensor is evaluated by comparison with laboratory data and analyzer measurements.</description><subject>Chemical industry</subject><subject>Data analysis</subject><subject>Data preprocessing</subject><subject>Laboratories</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Manufacturing industries</subject><subject>Manufacturing processes</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>Outliers</subject><subject>partial least squares</subject><subject>Petrochemicals</subject><subject>Preprocessing</subject><subject>Quality control</subject><subject>quality prediction</subject><subject>Refining</subject><subject>refining process</subject><subject>Regression</subject><subject>Sensors</subject><subject>soft sensor</subject><subject>Strategy</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtPwzAMxyMEEmNwR-JScYFLh_Nqm-O08Zg0xGPjHIXUhUxbO5IWad-eTJs4cODih_yzZftPyDmFAaWgbuaTyYABqGiYpEwckB5VgqYAEg5jLCVNOQN-TE5CWADwHLjqkcexaU069u4b62TWVG0ywzo0Phmu174x9jOpYvLSmaVrN8mzx9LZ1jV14urEJK9YudrVH7HQWAzhlBxVZhnwbO_75O3udj56SKdP95PRcJpaLmWbMiXKghqFjEohJCusyQEKwFyUZSGUgpJboyxK-W6VqjgtbIkZKw0znBnJ--RqNzfu-NVhaPXKBYvLpamx6YLOBc8ymhdZJK__JWmWx2cJlomIXv5BF03n63iHVpQqxVTGIgQ7yPomBI-VXnu3Mn6jKeitEDoKobdC6L0QseVi1-IQ8ReXNB7KFf8BAzuB3w</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Wang, D.</creator><creator>Jun Liu</creator><creator>Srinivasan, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201002</creationdate><title>Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process</title><author>Wang, D. ; Jun Liu ; Srinivasan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-294d81a9e21544528ca70080e74dd84990d3ca9ce55bc99f318cde62da2a32a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical industry</topic><topic>Data analysis</topic><topic>Data preprocessing</topic><topic>Laboratories</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Manufacturing industries</topic><topic>Manufacturing processes</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>Outliers</topic><topic>partial least squares</topic><topic>Petrochemicals</topic><topic>Preprocessing</topic><topic>Quality control</topic><topic>quality prediction</topic><topic>Refining</topic><topic>refining process</topic><topic>Regression</topic><topic>Sensors</topic><topic>soft sensor</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, D.</creatorcontrib><creatorcontrib>Jun Liu</creatorcontrib><creatorcontrib>Srinivasan, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, D.</au><au>Jun Liu</au><au>Srinivasan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2010-02</date><risdate>2010</risdate><volume>6</volume><issue>1</issue><spage>11</spage><epage>17</epage><pages>11-17</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In the petrochemical industry, the product quality reflects the commercial and operational performance of a manufacturing process. However, real-time measurement of product quality is generally difficult. Online prediction of quality using readily available, frequent process measurements would be beneficial in terms of operation and quality control. In this paper, a novel soft sensor technology based on partial least squares (PLS) regression is developed and applied to a refining process for quality prediction. The modeling process is described, with emphasis on data preprocessing, multivariate-outlier detection and variables selection. Enhancement of PLS strategy is also discussed for taking into account the dynamics in the process data. The proposed approach is applied to data from a refining process and the performance of the resulting soft sensor is evaluated by comparison with laboratory data and analyzer measurements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2009.2025124</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2010-02, Vol.6 (1), p.11-17
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_miscellaneous_1671244264
source IEEE Xplore
subjects Chemical industry
Data analysis
Data preprocessing
Laboratories
Least squares method
Least squares methods
Manufacturing industries
Manufacturing processes
Mathematical models
On-line systems
Outliers
partial least squares
Petrochemicals
Preprocessing
Quality control
quality prediction
Refining
refining process
Regression
Sensors
soft sensor
Strategy
title Data-Driven Soft Sensor Approach for Quality Prediction in a Refining Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Soft%20Sensor%20Approach%20for%20Quality%20Prediction%20in%20a%20Refining%20Process&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wang,%20D.&rft.date=2010-02&rft.volume=6&rft.issue=1&rft.spage=11&rft.epage=17&rft.pages=11-17&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2009.2025124&rft_dat=%3Cproquest_RIE%3E2543272921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911992962&rft_id=info:pmid/&rft_ieee_id=5184939&rfr_iscdi=true