Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method
This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descr...
Gespeichert in:
Veröffentlicht in: | Dian zi yu xin xi xue bao = Journal of electronics & information technology 2010-10, Vol.32 (10), p.2287-2293 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2293 |
---|---|
container_issue | 10 |
container_start_page | 2287 |
container_title | Dian zi yu xin xi xue bao = Journal of electronics & information technology |
container_volume | 32 |
creator | Zhao, Jian Sun, Ji-xiang Li, Zhi-yong Chen, Ming-sheng |
description | This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust. |
doi_str_mv | 10.3724/SP.J.1146.2010.00655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671243636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671243636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhD2ARFX6Dxg8siTYTmwnY6n4qoqICIzIcuw3TVAaF9tF8O9pKRK64aTT3Q0PQheUpJlk-VVdpcuU0lykjOwzQgTnJ2hCCSkTXpTiDM1CeCeE0IwJUbIJeqtcP0Zc6RjBj_hRR9P14xrPh7Xzfew2-FoHsNiN-BkGHftPwHWnt4AXbozwFbEeLa63YKLXw__-EWLn7Dk6bfUQYPbnU_R6e_OyuE9WT3cPi_kqMSznPMlAgDVUA9XacNIKmxU8l6ShBRVNWXIJtCkLCdpyawrZ5LyVhWWtYVwyJrMpujz-br372EGIatMHA8OgR3C7oKiQlOWZ2GuK8mPVeBeCh1Ztfb_R_ltRog4QVV2ppTpAVAeI6hdi9gP3aWcP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671243636</pqid></control><display><type>article</type><title>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</title><source>Alma/SFX Local Collection</source><creator>Zhao, Jian ; Sun, Ji-xiang ; Li, Zhi-yong ; Chen, Ming-sheng</creator><creatorcontrib>Zhao, Jian ; Sun, Ji-xiang ; Li, Zhi-yong ; Chen, Ming-sheng</creatorcontrib><description>This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.</description><identifier>ISSN: 1009-5896</identifier><identifier>DOI: 10.3724/SP.J.1146.2010.00655</identifier><language>chi ; eng</language><subject>Affinity ; Algorithms ; Graphs ; Invariants ; Mapping ; Matching ; Spectra ; Statistics</subject><ispartof>Dian zi yu xin xi xue bao = Journal of electronics & information technology, 2010-10, Vol.32 (10), p.2287-2293</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</citedby><cites>FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Sun, Ji-xiang</creatorcontrib><creatorcontrib>Li, Zhi-yong</creatorcontrib><creatorcontrib>Chen, Ming-sheng</creatorcontrib><title>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</title><title>Dian zi yu xin xi xue bao = Journal of electronics & information technology</title><description>This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Graphs</subject><subject>Invariants</subject><subject>Mapping</subject><subject>Matching</subject><subject>Spectra</subject><subject>Statistics</subject><issn>1009-5896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhD2ARFX6Dxg8siTYTmwnY6n4qoqICIzIcuw3TVAaF9tF8O9pKRK64aTT3Q0PQheUpJlk-VVdpcuU0lykjOwzQgTnJ2hCCSkTXpTiDM1CeCeE0IwJUbIJeqtcP0Zc6RjBj_hRR9P14xrPh7Xzfew2-FoHsNiN-BkGHftPwHWnt4AXbozwFbEeLa63YKLXw__-EWLn7Dk6bfUQYPbnU_R6e_OyuE9WT3cPi_kqMSznPMlAgDVUA9XacNIKmxU8l6ShBRVNWXIJtCkLCdpyawrZ5LyVhWWtYVwyJrMpujz-br372EGIatMHA8OgR3C7oKiQlOWZ2GuK8mPVeBeCh1Ztfb_R_ltRog4QVV2ppTpAVAeI6hdi9gP3aWcP</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Zhao, Jian</creator><creator>Sun, Ji-xiang</creator><creator>Li, Zhi-yong</creator><creator>Chen, Ming-sheng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201010</creationdate><title>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</title><author>Zhao, Jian ; Sun, Ji-xiang ; Li, Zhi-yong ; Chen, Ming-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2010</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Graphs</topic><topic>Invariants</topic><topic>Mapping</topic><topic>Matching</topic><topic>Spectra</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Sun, Ji-xiang</creatorcontrib><creatorcontrib>Li, Zhi-yong</creatorcontrib><creatorcontrib>Chen, Ming-sheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dian zi yu xin xi xue bao = Journal of electronics & information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jian</au><au>Sun, Ji-xiang</au><au>Li, Zhi-yong</au><au>Chen, Ming-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</atitle><jtitle>Dian zi yu xin xi xue bao = Journal of electronics & information technology</jtitle><date>2010-10</date><risdate>2010</risdate><volume>32</volume><issue>10</issue><spage>2287</spage><epage>2293</epage><pages>2287-2293</pages><issn>1009-5896</issn><abstract>This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.</abstract><doi>10.3724/SP.J.1146.2010.00655</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-5896 |
ispartof | Dian zi yu xin xi xue bao = Journal of electronics & information technology, 2010-10, Vol.32 (10), p.2287-2293 |
issn | 1009-5896 |
language | chi ; eng |
recordid | cdi_proquest_miscellaneous_1671243636 |
source | Alma/SFX Local Collection |
subjects | Affinity Algorithms Graphs Invariants Mapping Matching Spectra Statistics |
title | Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Pattern%20Matching%20Algorithm%20Based%20on%20Relative%20Shape%20Context%20and%20Spectral%20Matching%20Method:%20Point%20Pattern%20Matching%20Algorithm%20Based%20on%20Relative%20Shape%20Context%20and%20Spectral%20Matching%20Method&rft.jtitle=Dian%20zi%20yu%20xin%20xi%20xue%20bao%20=%20Journal%20of%20electronics%20&%20information%20technology&rft.au=Zhao,%20Jian&rft.date=2010-10&rft.volume=32&rft.issue=10&rft.spage=2287&rft.epage=2293&rft.pages=2287-2293&rft.issn=1009-5896&rft_id=info:doi/10.3724/SP.J.1146.2010.00655&rft_dat=%3Cproquest_cross%3E1671243636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671243636&rft_id=info:pmid/&rfr_iscdi=true |