Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method

This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dian zi yu xin xi xue bao = Journal of electronics & information technology 2010-10, Vol.32 (10), p.2287-2293
Hauptverfasser: Zhao, Jian, Sun, Ji-xiang, Li, Zhi-yong, Chen, Ming-sheng
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2293
container_issue 10
container_start_page 2287
container_title Dian zi yu xin xi xue bao = Journal of electronics & information technology
container_volume 32
creator Zhao, Jian
Sun, Ji-xiang
Li, Zhi-yong
Chen, Ming-sheng
description This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.
doi_str_mv 10.3724/SP.J.1146.2010.00655
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671243636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671243636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhD2ARFX6Dxg8siTYTmwnY6n4qoqICIzIcuw3TVAaF9tF8O9pKRK64aTT3Q0PQheUpJlk-VVdpcuU0lykjOwzQgTnJ2hCCSkTXpTiDM1CeCeE0IwJUbIJeqtcP0Zc6RjBj_hRR9P14xrPh7Xzfew2-FoHsNiN-BkGHftPwHWnt4AXbozwFbEeLa63YKLXw__-EWLn7Dk6bfUQYPbnU_R6e_OyuE9WT3cPi_kqMSznPMlAgDVUA9XacNIKmxU8l6ShBRVNWXIJtCkLCdpyawrZ5LyVhWWtYVwyJrMpujz-br372EGIatMHA8OgR3C7oKiQlOWZ2GuK8mPVeBeCh1Ztfb_R_ltRog4QVV2ppTpAVAeI6hdi9gP3aWcP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671243636</pqid></control><display><type>article</type><title>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</title><source>Alma/SFX Local Collection</source><creator>Zhao, Jian ; Sun, Ji-xiang ; Li, Zhi-yong ; Chen, Ming-sheng</creator><creatorcontrib>Zhao, Jian ; Sun, Ji-xiang ; Li, Zhi-yong ; Chen, Ming-sheng</creatorcontrib><description>This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.</description><identifier>ISSN: 1009-5896</identifier><identifier>DOI: 10.3724/SP.J.1146.2010.00655</identifier><language>chi ; eng</language><subject>Affinity ; Algorithms ; Graphs ; Invariants ; Mapping ; Matching ; Spectra ; Statistics</subject><ispartof>Dian zi yu xin xi xue bao = Journal of electronics &amp; information technology, 2010-10, Vol.32 (10), p.2287-2293</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</citedby><cites>FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Sun, Ji-xiang</creatorcontrib><creatorcontrib>Li, Zhi-yong</creatorcontrib><creatorcontrib>Chen, Ming-sheng</creatorcontrib><title>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</title><title>Dian zi yu xin xi xue bao = Journal of electronics &amp; information technology</title><description>This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Graphs</subject><subject>Invariants</subject><subject>Mapping</subject><subject>Matching</subject><subject>Spectra</subject><subject>Statistics</subject><issn>1009-5896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhD2ARFX6Dxg8siTYTmwnY6n4qoqICIzIcuw3TVAaF9tF8O9pKRK64aTT3Q0PQheUpJlk-VVdpcuU0lykjOwzQgTnJ2hCCSkTXpTiDM1CeCeE0IwJUbIJeqtcP0Zc6RjBj_hRR9P14xrPh7Xzfew2-FoHsNiN-BkGHftPwHWnt4AXbozwFbEeLa63YKLXw__-EWLn7Dk6bfUQYPbnU_R6e_OyuE9WT3cPi_kqMSznPMlAgDVUA9XacNIKmxU8l6ShBRVNWXIJtCkLCdpyawrZ5LyVhWWtYVwyJrMpujz-br372EGIatMHA8OgR3C7oKiQlOWZ2GuK8mPVeBeCh1Ztfb_R_ltRog4QVV2ppTpAVAeI6hdi9gP3aWcP</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Zhao, Jian</creator><creator>Sun, Ji-xiang</creator><creator>Li, Zhi-yong</creator><creator>Chen, Ming-sheng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201010</creationdate><title>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</title><author>Zhao, Jian ; Sun, Ji-xiang ; Li, Zhi-yong ; Chen, Ming-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2455-3e6edc1ae1aac50f6d385470b1816b9957e1b987ead5dc87b45f78d2fc2572273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2010</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Graphs</topic><topic>Invariants</topic><topic>Mapping</topic><topic>Matching</topic><topic>Spectra</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Sun, Ji-xiang</creatorcontrib><creatorcontrib>Li, Zhi-yong</creatorcontrib><creatorcontrib>Chen, Ming-sheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dian zi yu xin xi xue bao = Journal of electronics &amp; information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jian</au><au>Sun, Ji-xiang</au><au>Li, Zhi-yong</au><au>Chen, Ming-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method</atitle><jtitle>Dian zi yu xin xi xue bao = Journal of electronics &amp; information technology</jtitle><date>2010-10</date><risdate>2010</risdate><volume>32</volume><issue>10</issue><spage>2287</spage><epage>2293</epage><pages>2287-2293</pages><issn>1009-5896</issn><abstract>This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and the method of spectral matching are combined. A new point-set based invariant feature, Relative Shape Context (RSC) is proposed firstly. Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility measurement, the assignment graph and the affinity matrix of assignment graph are constructed based on the gained compatibility measurement. Finally, the correct matching results are recovered by using the principal eigenvector of affinity matrix of assignment graph and imposing the mapping constraints required by the overall correspondence mapping. Experiments on both synthetic point-sets and on real world data show that the proposed algorithm is effective and robust.</abstract><doi>10.3724/SP.J.1146.2010.00655</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1009-5896
ispartof Dian zi yu xin xi xue bao = Journal of electronics & information technology, 2010-10, Vol.32 (10), p.2287-2293
issn 1009-5896
language chi ; eng
recordid cdi_proquest_miscellaneous_1671243636
source Alma/SFX Local Collection
subjects Affinity
Algorithms
Graphs
Invariants
Mapping
Matching
Spectra
Statistics
title Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method: Point Pattern Matching Algorithm Based on Relative Shape Context and Spectral Matching Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Pattern%20Matching%20Algorithm%20Based%20on%20Relative%20Shape%20Context%20and%20Spectral%20Matching%20Method:%20Point%20Pattern%20Matching%20Algorithm%20Based%20on%20Relative%20Shape%20Context%20and%20Spectral%20Matching%20Method&rft.jtitle=Dian%20zi%20yu%20xin%20xi%20xue%20bao%20=%20Journal%20of%20electronics%20&%20information%20technology&rft.au=Zhao,%20Jian&rft.date=2010-10&rft.volume=32&rft.issue=10&rft.spage=2287&rft.epage=2293&rft.pages=2287-2293&rft.issn=1009-5896&rft_id=info:doi/10.3724/SP.J.1146.2010.00655&rft_dat=%3Cproquest_cross%3E1671243636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671243636&rft_id=info:pmid/&rfr_iscdi=true