Fully 3D self-consistent quantum transport simulation of Double-gate and Tri-gate 10 nm FinFETs

We utilize a fully self-consistent 3D quantum mechanical simulator based on the Contact Block Reduction (CBR) method to investigate the effects of fin height and unintentional dopant on the device characteristics of a 10-nm FinFET device. The per-fin height off-current is found to be relatively inse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2008-09, Vol.7 (3), p.346-349
Hauptverfasser: Khan, H., Mamaluy, D., Vasileska, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 3
container_start_page 346
container_title Journal of computational electronics
container_volume 7
creator Khan, H.
Mamaluy, D.
Vasileska, D.
description We utilize a fully self-consistent 3D quantum mechanical simulator based on the Contact Block Reduction (CBR) method to investigate the effects of fin height and unintentional dopant on the device characteristics of a 10-nm FinFET device. The per-fin height off-current is found to be relatively insensitive to fin height while the corresponding per fin height on-current may significantly depend on fin height due to the stronger confinement with decreasing fin height. Also gate leakage is found to show similar behavior as device on-current with decreasing fin height. Tri-gate (TG) FinFET is found to show better performance compared to Double-gate (DG) FinFET, with the exception of gate leakage current. Simulation results show that an unintentional dopant within the channel can significantly alter device characteristics depending on its position and applied biases. In addition, the effects of unintentional dopant are found to be stronger at high drain bias than at low drain bias.
doi_str_mv 10.1007/s10825-008-0224-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671240228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-7ec4dfe413b55071cd4f296972e6c2c405ecac99ad316159469bc33da37c1673</originalsourceid><addsrcrecordid>eNp1kM9KHTEUh4dioWp9gO4CpeAmNf8zWRbtrQXBzd3H3ExGRjLJNSez8G36LD6ZuYxUEFzl5Jzv_Dh8XfeNkp-UEH0BlPRMYkJ6TBgTWHzqjqnUDPeU66NDrQzuCZNfuhOAB0IYYYIed3ebJcYnxK8QhDhinxNMUEOq6HFxqS4zqsUl2OdSEUzzEl2dckJ5fP53lZddDPje1YBcGtC2TOuHEpRmtJnS5vcWvnafRxchnL2-p922tS-v8c3tn7-Xv26w59pUrIMXwxgE5TspiaZ-ECMzymgWlGdeEBm888a4gVNFpRHK7Dzng-PaU6X5aXe-xu5LflwCVDtP4EOMLoW8gG0MZaKp6Rv6_R36kJeS2nGWGdozJZUijaIr5UsGKGG0-zLNrjxZSuxBuV2V26bcHpRb0XZ-vCY78C6OzZyf4P8iI5obJlXj2MpBG6X7UN4u-Dj8Bct-j-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265660</pqid></control><display><type>article</type><title>Fully 3D self-consistent quantum transport simulation of Double-gate and Tri-gate 10 nm FinFETs</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Khan, H. ; Mamaluy, D. ; Vasileska, D.</creator><creatorcontrib>Khan, H. ; Mamaluy, D. ; Vasileska, D.</creatorcontrib><description>We utilize a fully self-consistent 3D quantum mechanical simulator based on the Contact Block Reduction (CBR) method to investigate the effects of fin height and unintentional dopant on the device characteristics of a 10-nm FinFET device. The per-fin height off-current is found to be relatively insensitive to fin height while the corresponding per fin height on-current may significantly depend on fin height due to the stronger confinement with decreasing fin height. Also gate leakage is found to show similar behavior as device on-current with decreasing fin height. Tri-gate (TG) FinFET is found to show better performance compared to Double-gate (DG) FinFET, with the exception of gate leakage current. Simulation results show that an unintentional dopant within the channel can significantly alter device characteristics depending on its position and applied biases. In addition, the effects of unintentional dopant are found to be stronger at high drain bias than at low drain bias.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-008-0224-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Bias ; Computer simulation ; Current leakage ; Devices ; Dopants ; Drains ; Electrical Engineering ; Electronics ; Engineering ; Exact sciences and technology ; Gates ; Leakage current ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Quantum mechanics ; Quantum transport ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Simulation ; Theoretical ; Three dimensional ; Transistors</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.346-349</ispartof><rights>Springer Science+Business Media LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-7ec4dfe413b55071cd4f296972e6c2c405ecac99ad316159469bc33da37c1673</citedby><cites>FETCH-LOGICAL-c379t-7ec4dfe413b55071cd4f296972e6c2c405ecac99ad316159469bc33da37c1673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-008-0224-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918265660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21388,23930,23931,25140,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20739256$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, H.</creatorcontrib><creatorcontrib>Mamaluy, D.</creatorcontrib><creatorcontrib>Vasileska, D.</creatorcontrib><title>Fully 3D self-consistent quantum transport simulation of Double-gate and Tri-gate 10 nm FinFETs</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>We utilize a fully self-consistent 3D quantum mechanical simulator based on the Contact Block Reduction (CBR) method to investigate the effects of fin height and unintentional dopant on the device characteristics of a 10-nm FinFET device. The per-fin height off-current is found to be relatively insensitive to fin height while the corresponding per fin height on-current may significantly depend on fin height due to the stronger confinement with decreasing fin height. Also gate leakage is found to show similar behavior as device on-current with decreasing fin height. Tri-gate (TG) FinFET is found to show better performance compared to Double-gate (DG) FinFET, with the exception of gate leakage current. Simulation results show that an unintentional dopant within the channel can significantly alter device characteristics depending on its position and applied biases. In addition, the effects of unintentional dopant are found to be stronger at high drain bias than at low drain bias.</description><subject>Applied sciences</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Current leakage</subject><subject>Devices</subject><subject>Dopants</subject><subject>Drains</subject><subject>Electrical Engineering</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Leakage current</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Quantum mechanics</subject><subject>Quantum transport</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Three dimensional</subject><subject>Transistors</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9KHTEUh4dioWp9gO4CpeAmNf8zWRbtrQXBzd3H3ExGRjLJNSez8G36LD6ZuYxUEFzl5Jzv_Dh8XfeNkp-UEH0BlPRMYkJ6TBgTWHzqjqnUDPeU66NDrQzuCZNfuhOAB0IYYYIed3ebJcYnxK8QhDhinxNMUEOq6HFxqS4zqsUl2OdSEUzzEl2dckJ5fP53lZddDPje1YBcGtC2TOuHEpRmtJnS5vcWvnafRxchnL2-p922tS-v8c3tn7-Xv26w59pUrIMXwxgE5TspiaZ-ECMzymgWlGdeEBm888a4gVNFpRHK7Dzng-PaU6X5aXe-xu5LflwCVDtP4EOMLoW8gG0MZaKp6Rv6_R36kJeS2nGWGdozJZUijaIr5UsGKGG0-zLNrjxZSuxBuV2V26bcHpRb0XZ-vCY78C6OzZyf4P8iI5obJlXj2MpBG6X7UN4u-Dj8Bct-j-A</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Khan, H.</creator><creator>Mamaluy, D.</creator><creator>Vasileska, D.</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Fully 3D self-consistent quantum transport simulation of Double-gate and Tri-gate 10 nm FinFETs</title><author>Khan, H. ; Mamaluy, D. ; Vasileska, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-7ec4dfe413b55071cd4f296972e6c2c405ecac99ad316159469bc33da37c1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Current leakage</topic><topic>Devices</topic><topic>Dopants</topic><topic>Drains</topic><topic>Electrical Engineering</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Leakage current</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Quantum mechanics</topic><topic>Quantum transport</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Three dimensional</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, H.</creatorcontrib><creatorcontrib>Mamaluy, D.</creatorcontrib><creatorcontrib>Vasileska, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, H.</au><au>Mamaluy, D.</au><au>Vasileska, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully 3D self-consistent quantum transport simulation of Double-gate and Tri-gate 10 nm FinFETs</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>346</spage><epage>349</epage><pages>346-349</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>We utilize a fully self-consistent 3D quantum mechanical simulator based on the Contact Block Reduction (CBR) method to investigate the effects of fin height and unintentional dopant on the device characteristics of a 10-nm FinFET device. The per-fin height off-current is found to be relatively insensitive to fin height while the corresponding per fin height on-current may significantly depend on fin height due to the stronger confinement with decreasing fin height. Also gate leakage is found to show similar behavior as device on-current with decreasing fin height. Tri-gate (TG) FinFET is found to show better performance compared to Double-gate (DG) FinFET, with the exception of gate leakage current. Simulation results show that an unintentional dopant within the channel can significantly alter device characteristics depending on its position and applied biases. In addition, the effects of unintentional dopant are found to be stronger at high drain bias than at low drain bias.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-008-0224-4</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2008-09, Vol.7 (3), p.346-349
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_miscellaneous_1671240228
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied sciences
Bias
Computer simulation
Current leakage
Devices
Dopants
Drains
Electrical Engineering
Electronics
Engineering
Exact sciences and technology
Gates
Leakage current
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Optical and Electronic Materials
Quantum mechanics
Quantum transport
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Simulation
Theoretical
Three dimensional
Transistors
title Fully 3D self-consistent quantum transport simulation of Double-gate and Tri-gate 10 nm FinFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%203D%20self-consistent%20quantum%20transport%20simulation%20of%C2%A0Double-gate%20and%20Tri-gate%2010%20nm%20FinFETs&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Khan,%20H.&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=346&rft.epage=349&rft.pages=346-349&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-008-0224-4&rft_dat=%3Cproquest_cross%3E2918265660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265660&rft_id=info:pmid/&rfr_iscdi=true